iCutter: A Direct Cut Out Tool for 3D Shapes

Min Meng Lubin Fan Ligang Liu

Department of Mathematics, Zhejiang University, China
State Key Laboratory of CAD&CG, Zhejiang University, China
Outline

- Problem statement
- User interface
- Segmentation method
- Experimental results
- Conclusion
Surface Segmentation

How does a shape consist of the subparts?

Part Type (Volume) Patch Type (Surface)
Segmentation of Meaningful Parts

- Automatic
- Interactive
 - User intension
 - Application dependent
User Interfaces

How can users express their intention?

"I want to cut out the head part of the bunny model"
User Interfaces

- User interfaces should be
 - Easy to use
 - Intuitive

Specify vertices on surface

Specify cutting plane
iCutter: Intelligent Cutter

- The user does not care much about how to draw the sketches
Sketching user interfaces

I want to cut out the head part from the bunny model...

What you draw is what you get!
Basic idea

- Sample the foreground and background seeds along the input stroke
- Compute the cut based on these initial seeds
Adaptive sampling

- Stroke sampling
- Feature points selection
- Foreground/background candidate
Scalar field

- Harmonic fields for pairs
- Weighted averaged field

\[F = \frac{\sum_{i=1}^{n} \mu_i F_i}{\sum_{i=1}^{n} \mu_i} \]
Cutting boundary

- Isoline selection
 - Centerness
 - Concaveness
Comparison of scalar field

- Comparison between the naive harmonic field and our scalar field

iCutter: A Direct Cut Out Tool for 3D Shapes
Geometry aware harmonic field

\[\Delta u_i = \sum_{j \in N_i} w_{ij} (u_i - u_j) \]

\[w_{ij} = \gamma \left(1 + \frac{\alpha_{ij}}{\text{avg}(\alpha_{ii})} \right)^{-1} \]
Experimental results

- Intensive to input strokes, noise, pose
Experimental results

- Cut out local parts
Experimental results

- Multiple strokes
Experimental results

- Running time

RT₁, RT₂, RT₃ denote the computation time of sampling, scalar field and isoline selection respectively.

<table>
<thead>
<tr>
<th>Model</th>
<th># Vertex</th>
<th>RT₁ (ms)</th>
<th>RT₂ (ms)</th>
<th>RT₃ (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feline</td>
<td>49,864</td>
<td>952</td>
<td>921</td>
<td>49</td>
</tr>
<tr>
<td>Bunny</td>
<td>34,839</td>
<td>842</td>
<td>858</td>
<td>47</td>
</tr>
<tr>
<td>Cow</td>
<td>6,938</td>
<td>172</td>
<td>141</td>
<td>3</td>
</tr>
<tr>
<td>Armadillo</td>
<td>25,193</td>
<td>749</td>
<td>484</td>
<td>32</td>
</tr>
<tr>
<td>Plank</td>
<td>25,445</td>
<td>609</td>
<td>546</td>
<td>32</td>
</tr>
<tr>
<td>Neptune</td>
<td>28,052</td>
<td>687</td>
<td>561</td>
<td>31</td>
</tr>
</tbody>
</table>
User study

- Compare the performance of three boundary-based cutting tools
 - Mesh scissor [Lee et al. 2005]
 - Cross-boundary brush [Zheng et al. 2010]
 - iCutter
User study

Analysis

Average measured accuracy

Survey of User feedback
Limitation

- Difficult to cut out parts from smooth surface
- Not suitable for cutting out the patch-type components
Conclusion

- Easy-to-use tool for interactive mesh cutting
- Provide users a favorable experience on cutting mesh surfaces
- **What you draw is what you get!**
Thank you for your listening!