
EUROGRAPHICS 2011 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Paint Mesh Cutting

Lubin Fan1,2, Ligang Liu†1,2, Kun Liu1

1Department of Mathematics, Zhejiang University, China
2State Key Laboratory of CAD&CG, Zhejiang University, China

Abstract

We present a novel progressive painting-based mesh cut out tool, called Paint Mesh Cutting, for interactive mesh
segmentation. Different from the previous user interfaces, the user only needs to draw a single stroke on the
foreground region and then obtains the desired cutting part at an interactive rate. Moreover, the user progressively
paints the region of interest using a brush and has the instant feedback on cutting results as he/she drags the
mouse. This is achieved by efficient local graph-cut based optimizations based on the Gaussian mixture models
(GMM) on the shape diameter function (SDF) metric of the shape. We demonstrate a number of various examples
to illustrate the flexibility and applicability of our system and present a user study that supports the advantages of
our user interface.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computer Graphics—
Geometry/Mesh SegmentationąłUser Interface

1. Introduction

Segmentation of 3D shapes into semantic parts or patches
is a key ingredient in many graphics applications. Develop-
ment of mesh segmentation algorithms has received much
attention and numerous algorithms have been developed
over the last decade [AKM∗06, Sha08].

However, it remains a challenge to develop automatic
mesh segmentation algorithms due to the complicated hu-
man perception. Therefore, interactive tools for mesh seg-
mentation have become very popular in recent years. There
have emerged three main types of user interfaces for cut-
ting meshes so far. The simplest interfaces rely on along-
cut strokes, asking the user to directly specify a set of
points along the cutting boundary [FKS∗04, CGF09]. This
could be tedious and time-consuming as it requires great
care on the part of the user when specifying the bound-
ary points. The more intuitive interfaces are based on
foreground/background strokes, allowing the user to freely
draw strokes to specify the foreground and background re-
gions [JLCW06,ZWC∗10]. It is sometimes unnatural for the
user to have to specify the background parts that he does not

† Corresponding: ligangliu@zju.edu.cn

Figure 1: Illustrations of Paint Mesh Cutting. The user
paints the region of interest with a single brush (in blue) on
a mesh surface and then obtains the cutting part (in orange).
Our system can provide the user instant feedback of the cut-
ting results during mouse dragging (from left to right). Note
that we only show 3 snapshots of the continuously sampled
point interaction here.

want to cut out. Recently, a cross-boundary brush based in-
terface was proposed [ZT10]. The user draws strokes across
a desired cutting boundary. The user has to know where the
cutting boundary is and has to carefully specify the strokes
across the precise boundary. In addition, the cutting bound-
ary is sensitive to the stroke directions which makes the cut-
ting results unstable.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

Our approach. In this work, we propose Paint Mesh Cut-
ting, a progressive painting-based tool for mesh segmen-
tation, which is inspired by the work of interactive image
segmentation [LSS09]. However, extending the foreground
brush user interface for mesh cutting is nontrivial. The chal-
lenges are twofold. First, what shape metric should we use?
Second, how to gain an interactive rate for progressive draw-
ing? Based on the Gaussian mixture models (GMM) on
the shape diameter function (SDF) metric of the shape, we
achieve it by graph-cut based optimizations which are per-
formed locally and efficiently.

Our system is easy to use and efficient. It provides a novel
and intuitive user interface where users cut out parts by di-
rectly painting the region of interest with a brush. Specif-
ically, users only need to freely paint strokes on the fore-
ground part. Unlike the previous interactive cutting tools,
users do not need to paint over the background part or the
boundary. The cutting results can be automatically expanded
from users’ paint brush and aligned with the part boundary.
By inspecting the new foreground region, users can contin-
uously paint the brush to expand the foreground while hold-
ing the left mouse button, until they are satisfied, as shown
in Figure 1. Many experiments show that our system extracts
semantic parts precisely and efficiently while requiring little
skill or effort from the user.

To the best of our knowledge, this is the first time the fore-
ground brush has been used to cut out mesh surfaces in such
an easy manner.

2. Related work

Automatic mesh segmentation. We refer the interested
readers to [Sha08] for a survey of state-of-the-art stud-
ies on mesh segmentation. Some representative work in-
cludes techniques based on graph cuts [KT03], hierar-
chical clustering [GG04], spectral clustering [LZ04], core
extraction [KLT05], primitive fitting [AFS06], random
walks [LHMR08], randomized cuts [GF08], and so on. Re-
cently, benchmarks based on a ground-truth corpus of hu-
man segmented 3D models are presented for evaluating
automatic mesh segmentation approaches in a quantitative
way [CGF09, BVLM09].

Sketching mesh segmentation. Fully automatic segmen-
tation is typically impossible as defining a semantic sub-
part for shapes still remains a challenging task. Sketch-
based interfaces, which are simple and intuitive and help
users easily express their intensions, have been successfully
used in interactive mesh segmentation. Instead of specify-
ing the boundary directly [FKS∗04, CGF09], the user sim-
ply and quickly draws freehand sketches on the mesh to
roughly mark out two types of regions (foreground and back-
ground) [JLCW06]. During the last few years, a series of
two-region sketch-based methods, based on multiple tech-
niques, such as region growing [JLCW06, WPP∗07], graph

cut [BMB09], random walks [LHMR08, ZWC∗10], hierar-
chical aggregation [XFT09], etc., have been proposed for in-
teractive mesh segmentation. A very recent work presents a
system for allowing the user to draw strokes across a desired
cutting boundary [ZT10]. We aim to develop a single fore-
ground painting interface for mesh segmentation. The user
only specifies strokes on the foreground region which is sim-
pler and more intuitive than the previous approaches.

Surface metrics. A surface metric, which defines a scalar
function over the mesh surface, plays an important role in
mesh segmentation. It is a critical key to find the right met-
ric which can capture the essence of the semantic com-
ponents. The minimal rule, which induces part boundaries
along negative curvature minima, is a classic metric to cap-
ture parts [HR84]. Other well-known surface metrics in-
clude geodesic distance based curvature map [GGGZ05],
an isophotic metric [PSH∗04], a feature-sensitive metric
based on geodesic and isophotic metrics [LZH∗07], diffu-
sion distance [dGGV08], curvature tensor based anisotropic
geodesic metric [SJC08] etc. Other metrics rely on vol-
umetric information [DZM08]. Shape diameter function
(SDF) [SSCO08] measures the diameter of the object’s vol-
ume in the neighborhood of each point on the surface, and
thus provides a mapping from volumetric information onto
the surface boundary. And it is invariant to pose changes.
The volumetric shape image (VSI) [LZSCO09] is also a
part-aware shape metric, which captures relevant visibility
information inside the shape’s enclosed volume by combin-
ing the SDF distance with geodesic distance and normal
variation. However, computation of VSI costs much more
than computation of SDF. In this work we adopt the SDF
metric to capture the surface essence of semantic parts.

3. Graph-cut based optimization

We extend the foreground painting user interface [LSS09] to
mesh cutting. However, the extension is nontrivial. We adopt
the similar mechanism with the work of [LSS09] and some
implementation issues have to been carefully handled.

In our system, we use SDF as the shape metric [SSCO08].
We first compute the SDF values M(·) for all vertices after
the mesh is loaded into the system, see Figure 2 (left) for the
SDF values on the Armodilo model.

The heart of our segmentation technique is minimum
graph-cut optimization [BJ01]. We consider the triangular
meshM= {V,E} as a graph with mesh vertices V as graph
nodes and mesh edges E as the corresponding graph edges.
Vertices are selected as the foreground seed vertices S f by
projecting each mouse point on the user’s painting brush P
onto the mesh surface and including all vertices within a cer-
tain distance (10 vertices) from that point. Our goal is to
compute the foreground part F starting from the foreground
seed vertices S f .

At the very beginning of the user interaction, the back-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

Figure 3: Main steps of Paint Mesh Cutting. Starting from an input model, we progressively paint brush on the region of interest
and get the desired cutting results.

Figure 2: Left: the SDF values of the Armodilo model (large
in red and small in blue). The user draws a blue brush on the
left leg region of the model. Upper right: the GMM model
p f (·) with k f = 2 components on the foreground (the blue
brush); Lower right: the GMM model pb(·) with kb = 4 com-
ponents on the background (the other region).

ground B = V and the foreground F = ∅. A background
SDF model pb(·) is initialized by randomly sampling a num-
ber (typically 1000) of the vertices from V by fitting a Gaus-
sian Mixture Model (GMM) with kb components using the
greedy Expectation-Maximization (EM) algorithm [VL02].
Similarly, a foreground SDF model p f (·) (a GMM with k f

components) is built based on S f (see Figure 2(right)).

Then, with the two SDF models p f and pb, we apply a
graph-cut based optimization to obtain the foreground F .
Specifically, we formulate the segmentation as a vertex-
labeling problem in terms of energy minimization. The bi-
nary labels L = {lv|v ∈ V} of the vertices V are obtained by

minimizing the following energy function:

E(L) = ∑
v∈V

Ed(lv)+λ ∑
(v,u)∈E

Es(lv, lu), (1)

where the data term Ed depicts the penalty of assigning a la-
bel lv to vertex v (1-foreground, 0-background), the smooth-
ness term Es describes the penalty for assigning different la-
bels to two adjacent vertices v and u, and λ is the weight.

Data term. We define the data term as follows:

Ed(lv) =

{
(1− lv) ·K, ∀v ∈ S f

lv ·L f
v +(1− lv) ·Lb

v , otherwise
(2)

where K is a sufficiently large constant, L f
v =− ln(p f M(v)+

ε) and Lb
v =− ln(pbM(v)+ε), ε is a small threshold number

to avoid zero value in the log function (we set ε = 10−6),
and M(v) is the SDF value of vertex v.

Smoothness term. The smoothness term is defined as:

Es(lv, lu) =−|lv− lu| · ln((1−β)n(v,u)+βg(v,u)) , (3)

where n(v,u) = 1−nv·nu
2 , g(v,u) = e(v,u)−emin

emax−emin
, nv and nu are

normals of adjacent vertices v and u respectively, e(v,u) is
the length of edge (v,u) ∈ E , emax and emin are the maxi-
mum and minimum of edge lengths respectively, and β is a
weight (we set β = 0.05). Like the VSI metric [LZSCO09],
we combine the SDF metric with normal variation n(v,u)
and geodesic distance g(v,u) in this smoothness term.

4. Paint mesh cutting system

In this section we present our novel framework of paint mesh
cutting.

4.1. User interface

Our interface is simple and easy to use. To execute a cut out
for a subpart, the user paints the part of interest (foreground)

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

with a brush while holding the left mouse button. Unlike the
previous UIs which compute results after the mouse button
is released, we trigger a segmentation optimization process
once the user starts to drag the mouse into the background,
see Figure 3 (second). Once the segmentation process is trig-
gered, we apply a progressive segmentation algorithm, de-
scribed below, to expand the foreground part. The expanded
foreground region is computed in a very short time interval
(usually under 0.1 seconds) and instantly displayed to the
user.

By inspecting the new foreground region, the user can
continuously drag the mouse to expand the foreground, until
satisfied, as illustrated in Figure 3 (also see the accompany
video). The user needs not paint over the entire area since
the foreground can be properly expanded from the brush to
the nearby part boundaries. The user can expand and refine
the foreground by drawing more brush strokes.

4.2. Progressive expansion algorithm

Here, we introduce the progressive expansion algorithm
which supports the progressive painting interface.

Initial global optimization. At the very beginning of the
user interaction, we set kb = 4 for building the background
GMM model pb(·). Once the user starts to draw a stroke
(which covers 3-ring vertex neighbors), an initial global op-
timization is triggered. The foreground GMM model p f (·)
is built by fitting the seed vertices with k f = 2 components.
With the two GMM models, we apply the graph cut opti-
mization as described in Equation 1 and obtain the initial
foreground region F , see Figure 3 (second).

Progressive local optimization. Given the existing fore-
ground F and current brush P , a local optimization is trig-
gered to compute a new and expanded foreground F ′ in the
background B, as shown in Figure 4 (left). Once the new
foreground F ′ is obtained, the existing foreground is up-
dated as F = F ∪F ′ for the next user interaction.

We denote the intersection between the brush P and the
background B as seed (red) vertices S f (S f = P ∩B). To
obtain a stable estimation, we dilate the frontal foreground
boundary inwards by a certain offset (typically 2 vertices)
and set the (blue) vertices in the dilated region as local fore-
ground vertices, as shown in Figure 4 (right). Using both
seed vertices and local foreground vertices, we build a lo-
cal foreground GMM model p f (·) with k f = 1 component.
Using local foreground vertices makes the estimation more
stable because the brush or seed vertex region may be very
small.

Then, we update the background SDF model. In each sub-
sequent user interaction, we replace the samples that were
labeled as foreground in the previous interaction with the
same number of vertices randomly sampled from the back-
ground. Estimating the background GMM using all the sam-

Figure 4: Progressive foreground expansion. Left: Given the
existing foreground F (in brown) and current brush P (in
blue) which touches the background B (in green), a local
optimization is triggered to compute a new and expanded
foreground F ′ shown in yellow. Right: the seed vertices S f

(in red) is computed by the intersection between the brush P
and the background B; The vertices in the inward dilation
of frontal foreground boundary is shown in blue. The region
R is computed by outward dilating the frontal foreground
boundary. The local graph-cut optimization is performed in
the region between the two yellow boundaries.

ples might cost much and does not meet the instant feed-
back requirement. Hence, we compute a region R by dilat-
ing the frontal foreground boundary outwards by a certain
offset (typically 20 vertices). The background GMM model
pb(·) is built by fitting the vertices in R∩B with kb = 4
components.

With the two GMM models, we apply the graph cut opti-
mization in Equation 1 and obtain the expanded foreground
region F ′ and update the foreground F , see Figure 3 (mid-
dle).

Final global optimization. Once the user stops painting the
brush by releasing the left mouse button, we apply the global
graph cut optimization again, see Figure 3 (right). Before
that, we update the foreground GMM p f (·) and the back-
ground GMM pb(·) by fitting the vertices in F and B re-
spectively. In the final global optimization we set k f = 2 and
kb = 4.

4.3. Implementation details

The reasons why progressive expansion can give users in-
stant feedback on good segmentation results are twofold.
First, SDF is a good shape metric which measure the essen-
tial characteristic (volumetric diameter) for shapes. Second,
only a small portion of vertices participate in the progres-
sive local optimizations, so it gives very quick updates while
the user drags the brush. In the following we discuss some
implementation issues and details.

Cutting boundary refinement. After we have the cutting
result obtained by the final global optimization after the user

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

releases the mouse, we perform a boundary optimization on
the segmentation boundary using snakes [JLCW06].

Background painting. Like the foreground/background
sketching UI [JLCW06], we also allow the user to expand
the background if necessary. This is done by painting strokes
on background. In our system, the user uses the right mouse
button to swap the roles of the foreground and background.
Suppose Sb is the seed vertices on the background strokes,
we modify the data term in Equation 2 as follows:

Ed(lv) =

(1− lv) ·K, ∀v ∈ S f ,

lv ·K, ∀v ∈ Sb,

lv ·L f
v +(1− lv) ·Lb

v , otherwise.

(4)

Adaptive weights. The weight λ in Equation 1 plays an im-
portant role in the graph-cut optimization. Graph cut op-
timization with small value of λ tends to get the cutting
part consisting of vertices with similar SDF values as the
dominant data term tries to match the GMMs of SDF val-
ues. Graph cut optimization with large value of λ achieves
good segmentation boundaries to match the minimal rule as
the normal variation and geodesic distance are considered
in the dominant smoothness term. We vary λ in different
steps. In the initial global optimization step, we set small
value of λ = λinitial to guarantee a good initial segmentation
result guided by SDF values. Then we increase the value
of λ = λlocal to let the cutting boundary catch the concave
creases during the progressive local optimization. Finally
λ = λ f inal should be reduced to get a better segmentation
result in the final global optimization phase. In our system,
we set λinitial = 1,λlocal = 10, and λ f inal = 2.

Speedup. We compute the SDF values when the user loads
the mesh in our system. However, computation of SDF
values on large meshes might be computational expensive.
To reduce the waiting time for the user, we compute SDF
values over the simplified mesh and then interpolate the
SDF values over the original mesh using the Poisson equa-
tion [KGMS10]. Furthermore, we adopt a fast implementa-
tion for graph-cut optimizations in our system [BK04] and
use the parallel and distributed graph-cut method to acceler-
ate the algorithm [SK10].

4.4. Patch-based paint brushes

Similar to [ZT10], our system allows the user to switch be-
tween part-brush vs. patch-brush easily by pressing a but-
ton. Fortunately, our system provides a unified framework
for both part-based and patch-based segmentations. We only
need to change the weights λ in Equation 1 to adapt to
the patch-based segmentation scenario. We set λinitial =
5,λlocal = 3, and λ f inal = 5 for patch-based brushes in our
system. By using these weights, both initial and final opti-
mization try to obtain the patches by clustering the vertices
with similar SDF values, and the local optimization tries to
catch the sharp features for cutting boundaries.

Figure 5: The user progressively paints the brush to cut out
a wing of the airplane.

Figure 6: The user can easily cut out the same parts from
objects with different poses using the paint brush tool.

5. Experimental results

We show some examples to illustrate the applicability and
flexibility of our system. All the examples presented in this
paper were made on a dual-core 3GHz machine with 4G
memory.

Figure 5 shows one example of using the paint brush to cut
a wing of the airplane in a progressive manner. Note that our
approach obtains reasonable results even there are a couple
of small bumps on the wing.

Thanks to the fact that the SDF values are invariant to
pose changes, the user can easily cut out the same part from
objects with different poses using the paint brush tool, see

Figure 7: The cut out results are not that dependent on the
specific brushes painted on the mesh surface. Thus users can
obtain what they want to get by freely painting brushes on
the surface.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

Figure 8: A complete segmentation example of using our paint brush tool.

Figure 11: Segmentation results produced by our system.

Figure 9: An example of progressive patch-based cutting.
Two foreground brushes are used.

Figure 6. In Figure 7, users paint three different brushes on
the left leg of the Armodillo model and obtain similar cutting
results.

Figure 8 shows a complete example of segmentation using
our tool. In each step, the user specifies one stroke on the
foreground region and obtains the corresponding foreground
part.

Figure 9 shows an example of progressive patch-brush
cutting. The user applies a second brush to cut out the ex-
pected patch.

Our approach is insensitive to noise in the mesh, see Fig-
ure 10. A certain amount of noise was added to the original
mesh, our system still obtains reasonable cutting results, ei-
ther for part-type or for patch-type cuts. We tested our algo-
rithm on the models in the Princeton benchmark database.
Some of the results are shown in Figure 11.

It is worthwhile pointing out that we choose SDF as the

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

Figure 10: Cutting results using our system for meshes with
different amount of noise. The numbers below the figures
show the amount of noise added on the original meshes.

Figure 12: Given the same specified foreground stroke, the
cutting results obtained by different shape metrics on the sur-
face (from left to right: Gauss curvature, mean curvature,
SDF) are quite different. The metric of SDF gives the most
meaningful part cutting result.

surface metric in our system because it is a pose-invariant
part-aware shape metric which measures the diameter of the
object’s volume in the neighborhood of each point on the
surface. Thus our method based on SDF provides nice mean-
ingful cutting results while other metrics such as Gaussian
curvature and mean curvature cannot always give the cor-
rect results, see Figure 12. The reason is that the curvature
based metrics are not part-aware. Points on much different
parts might have the same curvature metric. Thus the GMM
built based on the metric cannot reveal the local geometric
property of the cutting part. On the other hand, the curva-
ture based metric might work well for cutting the meaningful
patches from meshes. Particularly, Gaussian curvature met-
ric works much better than mean curvature metric. However,
both curvature based metric are quite sensitive to the mesh
noise and thus cannot give robust cutting patch results for
noisy meshes. Our SDF metric based method can give stable
cutting results as shown in Figure 10.

Table 1 lists the running time of the mesh segmentation re-
sults shown in this paper. As we can see, our system achieves
a fast performance in all these examples.

Model # Vertex T1 (ms) T2 (ms) T3 (ms)
Dino (Fig. 1) 28,150 53 10 178
Woman (Fig. 3) 5,691 8 6 27
Airplane (Fig. 5) 6,797 12 5 24
Armodilo (Fig. 6) 25,193 36 10 120
Bunny (Fig. 9) 34,835 54 11 248

Table 1: Running time (in milliseconds) for different exam-
ples shown in the paper. T1,T2,T3 denote the computation
time of the three steps in our algorithm, i.e., the initial global
optimization, each local optimization, and the final global
optimization, respectively.

5.1. User study

We conducted a usability study to compare the differ-
ent user interfaces for mesh segmentation, including fore-
ground/background brushes (FBB for short) [JLCW06],
cross boundary brushes (CBB for short) [ZT10], and our
foreground brushes (FB for short). See Figure 13 for the dif-
ferent user interfaces. We only compare the part-based seg-
mentation results for three tools. We used two criteria, i.e.,
efficiency and accuracy, to evaluate these tools.

Assignment. We invited 16 individuals to participate in our
experiment, of which 12 participants have experience in 3D
interaction and 4 participants are not familiar with 3D inter-
action. A user guide and sufficient time were given to each
participant, to familiarize himself/herself with the systems
that would be used to do the experiment.

We collected models in 16 categories from the Princeton
benchmark model database [CGF09], discarding the other
3 categories which are not suitable for part-based segmen-
tations. We chose one model (with 8k− 15k vertices) from
each category and thus our corpus contains 16 models. Each
model is associated with an image describing the segmen-
tation requirement. For the purpose of acquiring segmenta-
tions from participants for each model in the corpus, we di-
vided the ground-truth randomly into 16 sets, ensuring that
each set contains 6 models from different categories. Then
each participant was assigned to segment the models of one
set, each model with three segmentations using three inter-
active algorithms respectively.

Each participant was assigned to fill out a short question-
naire if he/she had finished the assignment. Users are re-
quested to rate the following questions on a scale of 1-3: how
easy the users specify the segmentation, how fast they carry
out the expected segmentations, how accurate they consider
their final segmentations, where 1 denotes lowest score, 3
denotes highest score. Finally, they were asked to rate the in-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

Figure 13: Different brush-based user interfaces for
mesh segmentation. Left: foreground/background brushes
(FBB) [JLCW06]; Middle: cross boundary brushes
(CBB) [ZT10]; Right: our foreground brushes (FB).

teractive algorithms again on a scale of 1-3, indicating how
good they perceived these algorithms to be.

Analysis. Based on the above studies, we made some anal-
ysis and comparisons among the three interactive segmenta-
tion tools.

Figure 14 shows the time statistics for segmentation tasks
using three tools. We have the following observations. Ac-
cording to the interaction time, FB needs less time than FBB
for users to specify the strokes and CBB needs the least time.
According to the algorithm computation time, FBB is the
fastest as it uses a region growing scheme. FB is faster than
CBB as CBB has to solve a large Poisson equation. Although
FB needs to solve a series of graph-cut optimizations, it is
still computationally efficient.

We used a region-based measure to compute the consis-
tency degree between the cutting result produced by the al-
gorithms and the ground truth. The measure is based on bi-
nary jaccard index to compare the object accuracies of inter-
active image segmentations and can be defined as [MO10]

BJI(S1,S2) =
||SO

1 ∩SO
2 ||

||SO
1 ∪SO

2 ||
, (5)

where SO
1 and SO

2 are the extracted regions of interactive
segmentation methods S1 and S2 respectively. We set SO

2
as the results in the benchmark. The higher the value of
BJI(S1,S2) is, the more accurate the segmentation SO

1 is.
Figure 15 shows the averaged BJI values of three algorithms.
We can see that FB achieves the highest BJI value which
means that FB generally obtains more accurate segmenta-
tion results than the other two algorithms.

According to the answers indicated by the participants
on a scale of 1-3 on rating the algorithms to the question-
naire, FB received the highest rank, followed by CBB, and
then FBB. That means, users prefer to using our novel inter-
face FB to do the segmentation generally. Therefore, Paint
Mesh Cutting gives the best experience for users to segment
meshes interactively.

Figure 14: Comparison of efficiency for three tools. Left:
averaged time (show as vertical bars) and variance (show as
vertical lines on top of the bars) of user interactions; Right:
averaged time and variance of performing the segmentation
algorithms.

Figure 15: Comparison of accuracy for three tools: aver-
aged BJI value (show as vertical bars) and variance (show
as vertical lines on top of the bars).

5.2. Limitations

Paint Mesh Cutting suffers a few drawbacks due to the na-
ture of the graph-cut optimization. One drawback is that this
tool is difficult to cut out the partial part for smooth sur-
faces. For example, a small stroke on a smooth cylinder sur-
face might result in obtaining the whole cylinder surface
instead of a short segment of the surface using our tool.
This is because the whole surface has the same SDF value
at each vertex. To cut out a short segment of the cylinder
surface, a background brush is also needed, just like in Easy
Mesh Cutting [JLCW06]. The other drawback is that the user
might have to specify many strokes to cut out some seman-
tic parts from highly-detailed regions. This is because the
optimization-guided contour tends to snap to sharp features
and concave creases. However, these drawbacks can be al-
leviated to some extent by combining with other interactive
segmentation tools.

6. Conclusion

We present a novel tool for interactive mesh segmentation,
which allows users to only paint strokes on the region of in-
terest. Our system obtains the cutting results instantly while
users paint the brushes by holding the left mouse button.
By inspecting the foreground region, users can continuously
drag the mouse to expand the region of interest, until they are
satisfied. Our paint based cutting system provides users a fa-
vorable experience on cutting mesh surfaces without consid-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

L. Fan, L. Liu, K. Liu / Paint Mesh Cutting

ering the region of non-interests, which embodies the motif
“what you paint is what you get (WYPIWYG)”.

Acknowledgement. We thank anonymous reviewers for
valuable feedback. We are thankful to Jie Xu for video narra-
tion. This work is supported by the National Natural Science
Foundation of China (61070071) and the 973 National Key
Basic Research Foundation of China (No. 2009CB320801).

References
[AFS06] ATTENE M., FALCIDIENO B., SPAGNUOLO M.: Hi-

erarchical mesh segmentation based on fitting primitives. The
Visual Computer 22, 3 (2006), 181–193. 2

[AKM∗06] ATTENE M., KATZ S., MORTARA M., PATANE G.,
SPAGNUOLO M., TAL A.: Mesh segmentation - a comparative
study. In Proc. Shape Modelling International (2006), pp. 14–25.
1

[BJ01] BOYKOV Y. Y., JOLLY M.-P.: Interactive graph cuts
for optimal boundary & region segmentation of objects in n-d
images. In Proc. Internation Conference on Computer Vision
(ICCV) (2001), pp. 105–112. 2

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental com-
parison of min-cut/max-flow algorithms for energy minimization
in vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence 26, 9 (2004), 1124–1137. 5

[BMB09] BROWN S., MORSE B., BARRETT W.: Interactive part
selection for mesh and point models using hierarchical graph-cut
partitioning. In Proc. Graphics Interface (2009). 2

[BVLM09] BENHABILES H., VANDEBORRE J.-P., LAVOUÉ G.,
MOHAMEDDAOUDI: A framework for the objective evaluation
of segmentation algorithms using a ground-truth of human seg-
mented 3D-models. In Proc. Shape Modeling International (June
26-28 2009). short paper. 2

[CGF09] CHEN X., GOLOVINSKIY A., FUNKHOUSER T.: A
benchmark for 3D mesh segmentation. ACM Transactions on
Graphics (Proc. SIGGRAPH) 28, 3 (Aug. 2009). 1, 2, 7

[dGGV08] DE GOES F., GOLDENSTEIN S., VELHO L.: A hier-
archical segmentation of articulated bodies. 1349–1356. 2

[DZM08] DYER R., ZHANG H., MÖLLER T.: Surface sampling
and the intrinsic voronoi diagram. 1393–1402. 2

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN
P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Mod-
eling by example. ACM Transactions on Graphics (Proc. SIG-
GRAPH) 23, 3 (2004), 652–663. 1, 2

[GF08] GOLOVINSKIY A., FUNKHOUSER T.: Randomized cuts
for 3D mesh analysis. ACM Transactions on Graphics (Proc.
SIGGRAPH ASIA) 27, 5 (2008), Article No.: 145. 2

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation using
local slippage analysis. In Proc. Symposium on Geometry Pro-
cessing (2004), pp. 214–223. 2

[GGGZ05] GATZKE T., GRIMM C., GARLAND M., ZELINKA
S.: Curvature maps for local shape comparison. In Proc. Shape
Modeling International (2005), pp. 246–255. 2

[HR84] HOFFMAN D. D., RICHARDS W. A.: Parts of recogni-
tion. Cognition 18 (1984), 65–96. 2

[JLCW06] JI Z., LIU L., CHEN Z., WANG G.: Easy mesh cut-
ting. Computer Graphic Forum (Proceedings of Eurographics)
25, 3 (2006), 283–291. 1, 2, 5, 7, 8

[KGMS10] KOVACIC M., GUGGERI F., MARRAS S., SCATENI
R.: Fast approximation of the shape diameter function. In Proc.
Workshop on Computer Graphics, Computer Vision and Mathe-
matics (GraVisMa) (2010). 5

[KLT05] KATZ S., LEIFMAN G., TAL A.: Mesh segmentation
using feature point and core extraction. The Visual Computer
(Proc. Pacific Graphics) 21, 8-10 (2005), 649–658. 2

[KT03] KATZ S., TAL A.: Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts. ACM Transactions on Graphics
(Proc. SIGGRAPH) 22, 3 (2003), 954–961. 2

[LHMR08] LAI Y.-K., HU S.-M., MARTIN R. R., ROSIN P. L.:
Fast mesh segmentation using random walks. In Proc. ACM Sym-
posium on Solid and Physical Modeling (2008), pp. 183–191. 2

[LSS09] LIU J., SUN J., SHUM H.: Paint selection. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 28, 3 (2009), Article
No. 69. 2

[LZ04] LIU R., ZHANG H.: Segmentation of 3D meshes through
spectral clustering. In Proc. Pacific Graphics (2004), pp. 298–
305. 2

[LZH∗07] LAI Y. K., ZHOU Q. Y., HU S., WALLNER J.,
POTTMANN H.: Robust feature classification and editing. IEEE
Transactions on Visualization and Computer Graphics 13, 1
(2007), 34–45. 2

[LZSCO09] LIU R., ZHANG H., SHAMIR A., COHEN-OR D.: A
part-aware surface metric for shape analysis. Computer Graphics
Forum (Proc. Eurographics) 28, 2 (2009), 397–406. 2, 3

[MO10] MCGUINNESS K., O’CONNOR N.: A comparative eval-
uation of interactive segmentation algorithms. Pattern Recogni-
tion 43, 2 (2010), 434–444. 8

[PSH∗04] POTTMANN H., STEINER T., HOFER M., HAIDER
C., HANBURY A.: The isophotic metric and its application to
feature sensitive morphology on surfaces. In Proc. European
Conference on Computer Vision (2004), pp. 560–572. 2

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 6 (2008), 1539–1556. 1, 2

[SJC08] SEONG J. K., JEONG W. K., COHEN E.: Anisotropic
geodesic distance computation for parametric surfaces. In Proc.
Shape Modeling International (2008), pp. 179–186. 2

[SK10] STRANDMARK P., KAHL F.: Parallel and distributed
graph cuts by dual decomposition. In Proc. IEEE International
Conference on Computer Vision and Pattern Recognition (CVPR)
(2010). 5

[SSCO08] SHAPIRA L., SHAMIR A., COHEN-OR D.: Consistent
mesh partitioning and skeletonization using the shape diameter
function. The Visual Computer 24, 4 (2008), 249–259. 2

[VL02] VLASSIS N., LIKAS A.: A greedy em algorithm for gaus-
sian mixture learning. Neural Processing Letters 15, 1 (2002),
77–87. 3

[WPP∗07] WU H.-Y., PAN C., PAN J., YANG Q., MA S.: A
sketch-based interactive framework for real-time mesh segmen-
tation. In Proc. Computer Graphics International (2007). 2

[XFT09] XIAO C., FU H., TAI C.-L.: Hierarchical aggregation
for efficient shape extraction. The Visual Computer 25, 3 (2009),
267–278. 2

[ZT10] ZHENG Y., TAI C.-L.: Mesh decomposition with cross-
boundary brushes. Computer Graphics Forum (Proc. Eurograph-
ics) 29, 2 (2010), 527–535. 1, 2, 5, 7, 8

[ZWC∗10] ZHANG J., WU C., CAI J., ZHENG J., CHENG TAI
X.: Mesh snapping: Robust interactive mesh cutting using fast
geodesic curvature flow. Computer Graphics Forum (Proc. Eu-
rographics) 29, 2 (2010), 517–526. 1, 2

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

