

Paint Mesh Cutting

Lubin Fan Ligang Liu Kun Liu

Zhejiang University

Outline

- Related work & Motivation
- Basic algorithm
 - Graph cuts based optimization
- Paint mesh cutting system
 - Global and local optimization
- Results & conclusion
 - Results
 - User study
 - Conclusion

How to cut out its tail?

Automatic algorithms

- Interactive tools for mesh segmentation
 - Direct UI

Direct UI [Funkhouser et al. 2004, Chen et al. 2009]

- Interactive tools for mesh segmentation
 - Direct UI
 - Sketch-based UI

- Interactive tools for mesh segmentation
 - Direct UI
 - Sketch-based UI

Foreground/background Brushes (FBB) [Ji et al. 2006, Zhang et al. 2010]

- Interactive tools for mesh segmentation
 - Direct UI
 - Sketch-based UI

Cross-boundary Brushed (CBB) [Zheng et al. 2010]

- Interactive tools for mesh segmentation
 - Direct UI
 - Sketch-based UI

Foreground/background Brushes (FBB) [Ji et al. 2006, Zhang et al. 2010]

Cross-boundary Brushes (CB) [Zheng et al. 2010]

Related Work

- Interactive image segmentation
 - Paint Selection [Liu et al. 2009]

2D

Paint Selection [Liu et al. 2009]

3D

Our Goal

- Easy and simple
- Natural manner
- Specify user intention intuitively
- Instant feedback

What you paint is what you get!

This Work

This Work

Optimization

Minimize the Energy

$$E(L) = \sum_{v \in v} E_d(l_v) + \lambda \sum_{(v,u) \in \varepsilon} E_s(l_v, l_u)$$

- $E_d\left(\square\right)$ data term, the penalty of assigning a label l_v to vertex v (1-foreground, 0-background).
- $E_s\left(\Box\Box\right)$ smoothness term, the penalty for assigning different labels to two adjacent vertices v and u.

Data Term – $E_o(\cdot)$

How to define the penalty in data term?

$$E_d(l_v) = l_v \cdot L_v^f + (1 - l_v) \cdot L_v^b$$

$$L_{v}^{f} = -\ln\left(p_{f}M\left(v\right) + \varepsilon\right)$$

$$L_{v}^{b} = -\ln\left(p_{b}M\left(v\right) + \varepsilon\right)$$
Probability

$$M(v)$$
 Surface Metric \mathbf{P}

Background - 0

Surface Metric

- Shape diameter function(SDF) [Shamir et al. 2008]
 - Rely on volume information
 - Insensitive to noise
 - Insensitive to pose variation

Build SDF Models

Build SDF Models

Gaussian Mixture Model (GMM)

Data Term – $E_o(\cdot)$

Data Term

$$E_{d}\left(l_{v}\right) = \begin{cases} \left(1 - l_{v}\right) \cdot K, & \forall v \in S^{f} \\ l_{v} \cdot L_{v}^{f} + \left(1 - l_{v}\right) \cdot L_{v}^{b}, & otherwise \end{cases}$$

$$L_{v}^{f} = -\ln\left(p_{f}M(v) + \varepsilon\right)$$
100
75
50
25
0
0.2 0.4 0.6 0.8 1.0

Foreground

$$L_{v}^{b} = -\ln\left(p_{b}M(v) + \varepsilon\right)$$

$$\begin{array}{c} 6000 \\ 4500 \\ 3000 \\ 1500 \\ 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \end{array}$$

Background

Energy Terms

- Data Term
- Smoothness Term

Graph Cuts

Foreground (Source)

[Boykov and Jolly 2001]

System Overview

Progressive expansion algorithm

Goal

- simple and easy to use
- instant feedback (usually under 0.1 sec.)
- expand the foreground continuously

Initial Global Optimization

- Compute SDF values.
- Construct global graph.
- Build the background GMM model $p_b(\cdot)$ with 4 components.
- Build the foreground GMM model $p_f(\cdot)$ with 2 components.
- Apply the graph cuts optimization.

Progressive Local Optimization

Progressive Local Optimization

- Construct local graph.
- Build $p_f(\cdot)$ with 1 components.
- Update background sample vertices.
- Update $p_b(\cdot)$.
- Apply graph cuts optimization to local graph.

- Construct local graph.
- Build $p_f(\cdot)$ with 1 components.
- Update background sample vertices.
- Update $p_b(\cdot)$.
- Apply graph cuts optimization to local graph.

Final Global Optimization

- Update $p_f(\cdot)$ with 2 components.
- Update $p_b(\cdot)$ with 4 components.
- Apply the graph cuts optimization.

Flow Chart

- Cutting boundary refinement
 - Boundary smoothing by snakes on mesh [Ji et al. 2006]

- Cutting boundary refinement
- Background painting

- Cutting boundary refinement
- Background painting
- Speedup
 - Computation of SDF values
 - Interpolation using the Poisson equation [Kovacic et al. 2010]
 - Graph cuts optimization
 - Parallel graph-cut method [Srandmark et al. 2010]

Results

Results

• Independent on specific brushes

Insensitive to pose variation

Insensitive to noise

Running time

Model	# Vertex	T ₁ (ms)	T₂ (ms)	T ₃ (ms)
Dino	28,150	53	10	178
Woman	5,691	8	6	27
Airplane	6,797	12	5	24
Armadillo	25,193	36	10	120
Bunny	34,835	54	11	248

* T_1 , T_2 , T_3 denote the computation time of the three steps in our algorithm, i.e., the initial global optimization, averaged local optimization, and the final global optimization, respectively.

More

User Study

- Three sketch-based user interface algorithms
 - Foreground/background brushes (FBB) [Ji et al. 2006]
 - Cross boundary brushes (CBB) [Zheng et al. 2010]
 - Foreground brushes (FB) Paint Mesh Cutting

User Study

Assignment

- 16 participants
- 16 models
- Each participant test 6 models by using 3 algorithms respectively.
- A short questionnaire
 - Accuracy
 - Efficiency
 - User intention
 - The favorite algorithm

Corpus

Analysis

Interaction time

Averaged time and standard error of user interactions

Averaged time and standard error of the segmentation algorithm

Analysis

Accuracy

Region-based measure[McGuinness et al. 2010]

$$BJI(S_1, S_2) = \frac{\left\|S_1^0 \cap S_2^0\right\|}{\left\|S_1^0 \cup S_2^0\right\|}$$

Subjective evaluation

Order	Algorithm	
1	FB	
2	СВВ	
3	FBB	

Comparison of accuracy for three tools: averaged BJI value and standard error.

Limitations & Future Work

- It is difficult to cut out the partial part for smooth surfaces.
- User need to specify many strokes to cut out some semantic parts from highly-detailed regions.

Conclusion

- Novel tool for interactive mesh segmentation
- Obtain the cutting results instantly
- Provide users a favorable experience on cutting mesh surfaces
- What you paint is what you get!

Thanks!

Acknowledgements

- Funding agencies:
 - National Natural Science Foundation of China (61070071)
 - 973 National Key Basic Research Foundation of China (No. 2009CB320801)
- Jie Xu for video narration