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a b s t r a c t

This paper presents an extensive comparative evaluation of five popular foreground/background

sketch-based interactive mesh segmentation algorithms, addressing the quantitative assessment of

the accuracy, efficiency, and stability of each algorithm. To facilitate the comparison, we have

developed a complete framework with an intuitive and simple sketch-based interface to enable

interactive mesh segmentation by marking strokes to specify the foreground and background with the

mouse buttons, allowing us to quantify the algorithms in a unified manner. The evaluation has been

performed via extensive user experiments in which each participant was assigned to segment models

with the evaluated algorithms and the corresponding update of each segmentation was recorded as a

new refinement when additional interactions were added. We then collected the segmentations from

participants and evaluated them against the ground-truth corpus constructed from the Princeton

segmentation database. To investigate how well the interactive segmentations match the ground-truth,

five metrics were used to measure the boundary and region accuracy of segmentations. By studying the

experimental results, we have analyzed the performance of the evaluated algorithms and provided

valuable insights into their characteristics.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The segmentation of 3D shapes into meaningful parts or
semantic components is a key component in many graphics
applications such as modeling [8], morphing [26,12], shape
editing and deformation [14], texture mapping [16], shape retrie-
val [1,27]. The development of mesh segmentation algorithms has
become a hot research topic, and numerous algorithms have been
developed over the last decade [2,20].

Some applications, such as shape labeling and retrieval,
require quick segmentation results and therefore require effective
automatic segmentation algorithms. On the other hand, many
other applications require accurate semantic segmented subparts.
However, defining semantic subparts for shapes remains a chal-
lenging. It is time consuming to select an optimal automatic
algorithm with well-tuned parameters for particular applications.
Therefore, research on evaluating the quality of mesh segmenta-
tion algorithms has recently been recognized as important [6,3,4].
These methods are based on ground-truth evaluation benchmarks
that consist of manual segmentations. The evaluation results have

shown that no automatic segmentation algorithm is better than
others.

Interactive segmentation algorithms can detect and extract
semantic parts through a series of interactions where human
operators provide useful high-level information to aid in this task.
Due to their intuitive nature and simplicity, sketch-based user
interfaces provide flexible interaction between computers and
users and have been successfully used in segmenting 3D shapes
into meaningful parts in an intuitive manner [13]. Specifically, the
user simply draws rough, freehand sketches on the mesh surface
to specify the foreground and background, and the algorithm
updates the segmentation using the new information. By itera-
tively providing more interactions, the user can refine the
segmentation. Fig. 1 illustrates an example of segmenting the
head from a bunny model by specifying the sketches. In recent
years, the study of sketch-based mesh segmentation has attracted
much attention, and many techniques have been proposed
[13,22,15,23,5,24,25].

Although the foreground/background sketch-based user inter-
faces provide an intuitive method for mesh segmentation, these
works use different mechanisms in their algorithms and thus
have different results and performance levels, even with the same
input sketches. However, there is as yet no work on the quanti-
tative evaluation of how well these approaches perform. The goal
of this paper is to evaluate the performance of these foreground/
background sketch-based interactive segmentation algorithms in

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cag.2011.03.038

� Corresponding author at: Department of Mathematics, Zhejiang University,

China. Tel./fax: þ86 571 87953668.

E-mail address: ligangliu@zju.edu.cn (L. Liu).

Computers & Graphics 35 (2011) 650–660



Author's personal copy

a quantitative way via extensive user experiments. To this end, a
complete framework for the performance evaluation of interac-
tive segmentation algorithms, addressing the part-type compo-
nents extraction from 3D models, is developed. We leverage the
ideas of previous work in automatic comparison, and use related
metrics in interactive segmentation to measure the similarities
between the reference segmentation from the ground-truth (the
Princeton segmentation benchmark [6]) and that obtained by
interactive algorithms.

To our knowledge, our work is the first comprehensive evalua-
tion of the state-of-the-art foreground/background sketch-based
mesh segmentation algorithms. The contributions of this work can
be summarized as follows:

� a software platform was implemented and designed for evaluat-
ing different foreground/background sketch-based interactive
segmentation algorithms in a unified environment. We imple-
mented five state-of-the-art interactive mesh segmentation
algorithms in this platform for a fair and extensive comparison;
� we created a ground-truth segmentation dataset, which is

well designed and selected from the Princeton segmentation
benchmarks, for specifically evaluating the interactive
segmentation algorithms. The dataset consists of 90 models
with 18 different categories, and the segmented parts cover a
wide range of types of shapes;
� extensive analysis and comparisons of the experimental results

were demonstrated, and valuable insights into the performance
and characteristics of all the algorithms have been provided.

2. Related work

In the processing of various media data, such as images, video,
audio, and geometric shapes, the development of segmentation
techniques has drawn extensive and consistent attention. Accord-
ingly, a large number of studies [9,18,6,3] have been proposed for
both computing and evaluating segmentations in these fields.
Here we review only the most relevant studies, emphasizing the
evaluation of mesh segmentation and sketch-based user interface
techniques.

Research on the methods for evaluating the quality of mesh
segmentation algorithms has recently been recognized as important.
The state-of-the-art in 3D mesh segmentation evaluation was first
proposed by Attene et al. [2]. Five segmentation algorithms were
compared on 11 3D surface meshes in a qualitative way. The
evaluations and comparisons were performed by showing side-by-
side segmentations produced by different algorithms. Recently, two

main works [6,3] for quantitatively evaluating automatic mesh
segmentation were presented. Both works proposed systems and
bechmarks which are based on a ground-truth corpus of human
segmented 3D models. Recently, an extensive experimental com-
parison of existing metrics for the quality assessment problem of
mesh segmentation was addressed by Benhabiles et al. [4]. All of the
above studies were focused exclusively on evaluating automatic
mesh segmentation. However, little attention has been dedicated to
evaluating interactive mesh segmentation.

Sketch-based interfaces, which are simple and intuitive and
help users easily express their intentions, have been successfully
used in object selection in images [21], image segmentation using
graph cuts [17], and mesh segmentation based on region growing
[13]. All of these methods have developed sketch-based interfaces
to provide flexible interactions between computers and users.
Specifically, a series of foreground/background sketch-based
methods based on multiple techniques (shown in Table 1), such
as region growing [13,22], graph cuts [5], random walks [15,24],
and hierarchical aggregation [23], have been proposed for inter-
active mesh segmentation. Recently, two other types of sketch-
based user interfaces were proposed to segment meaningful parts
of meshes: the cross-boundary brushes allow the user to draw
strokes across a desired cutting boundary [25], and the paint mesh

cutting allows the user to draw strokes on the foreground region
only [7]. In this paper we focus on evaluating the performance of
foreground/background sketch-based interactive mesh segmenta-
tion algorithms, as listed in Table 1.

3. Foreground/background sketch-based mesh segmentation
algorithms

For the purpose of consistent and fair comparison, we only
evaluate the interactive segmentation algorithms for extracting
meaningful parts from 3D shapes. Table 1 lists all the foreground/
background sketch-based mesh segmentation methods published
in the literature so far. We classify these algorithms into five
typical types. One representative algorithm is chosen from each
type. Thus, we have five interactive algorithms (abbreviated EMC,
RWS, HAE, GCS, and HFM, respectively) for evaluations, which
provide a good coverage of the various approaches. We describe
briefly each algorithm in this section. For further details, please
refer to the original papers.

Fig. 1. Illustration of foreground/background sketch-based interactive mesh

segmentation. Given a bunny model (a), the user marks a blue stroke on the area

of the bunny’s head (foreground) and a red stroke on the area of the bunny’s body

(background) and obtains a segmentation result in (b). The user then specifies an

additional red stroke on the area of the bunny’s body and the algorithm updates

the segmentation using the new information, as shown in (c). (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 1
Algorithms for sketch-based interactive mesh segmentation.

Method Algorithms Abbreviation

Region growing Easy mesh cutting [13] EMC

A sketch-based interactive

framework for real-time mesh

segmentation [22]

Random walks Fast mesh segmentation using

random walks [15]

RWS

Bottom-up aggregation Hierarchical aggregation for

efficient shape extraction [23]

HAE

Graph-cut Interactive part selection for

mesh and point models using

hierarchical graph-cut

partitioning [5]

GCS

Harmonic field based Sketching mesh segmentation

based on feature preserving

harmonic field [19]

HFM

Mesh decomposition with

cross-boundary brushes [25]
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3.1. Easy mesh cutting (EMC)

Easy mesh cutting (EMC), proposed by Ji et al. [13], was the
first foreground/background sketch-based user interface for mesh
segmentation. It uses a simple and efficient region growing
algorithm based on an improved feature-aware isophotic metric.
Due to its fast speed, it has gained popularity, even without any
statistical or probabilistic mathematical foundation.

EMC starts with the seed vertices from the foreground and
background sketches simultaneously and grows their correspond-
ing regions incrementally. Each mesh vertex on the input
sketches is labeled as ‘‘F’’ (foreground part) or ‘‘B’’ (background
part). All the other vertices are labeled as ‘‘U’’ (unknown). At each
step, a vertex with label ‘‘U’’, adjacent to the foreground or
background seeds, is selected, relabeled and added to the corre-
sponding set. The vertex is chosen to be the one with the
minimum distance to the foreground or background seeds based
on the improved isophotic metric.

Wu et al. [22] proposed a similar method for sketching mesh
segmentation based on region growing by using a different
metric. We also implemented their method in our system. From
our experiments, both methods [13,22] achieved similar perfor-
mance in both segmentation results, and running speed. We
chose EMC [13] as the representative method of this type as it
was published earlier.

3.2. Random walks segmentation (RWS)

The random walks segmentation (RWS), presented in [15],
provides mesh segmentation according to the probability value
computed by minimizing a Dirichlet energy, which is similar in
spirit to the corresponding method for image segmentation [11].

RWS proceeds as follows: the user is assumed to pick n triangles
as seeds, where n is the desired number of parts (we set n¼2 in our
evaluation). A probability is associated with each of the three edges
of each non-seed triangle fk, denoted by p

k ,1 ,p
k ,2 ,p

k ,3 ð
P3

i ¼ 1 p
k ,i ¼ 1Þ,

respectively. These correspond to the probabilities that a random
walk will move across a particular edge to the corresponding
neighbor. As the random steps increase, the following equation
holds for each non-seed triangle fk:

PlðfkÞ ¼
X3

i ¼ 1

p
k ,i P

lðf
k ,i Þ, ð1Þ

where the f
k ,i are the triangles neighboring fk, Pl(fk) is the probability

of a random walk starting from fk arriving at seed sl (foreground or
background seed). The above formulation results in a sparse linear
system. Finally, each non-seeded triangle is determined to belong to
the foreground region if a random walk starting at that triangle has
a higher probability of reaching foreground seeds than background
seeds, and vice versa.

3.3. Bottom-up aggregation (HAE)

The bottom-up aggregation algorithm (HAE), described by
Xiao et al. [23], employs a hierarchical method for extracting
high-level features through local adaptive aggregation. First, it
introduces a multi-scale geometric similarity measure between
adjacent vertices, which indicates the difference in the local
shapes. Second, a graph G weighted by the similarity measure is
constructed according to the model and can be partitioned into
two subgraphs by minimizing a normalized energy. Instead of
directly minimizing the energy, an iterative process of adaptive
vertex aggregation is adopted to reduce the computational cost.
Statistics of curvature are important for recognizing patches of
consistent geometry and are used to define the multi-scale

similarity measure between neighboring aggregates to improve
feature extraction results. Finally, the boundaries of features
detected at coarse levels can be refined iteratively to the finest
level. In order to extract features of interest interactively from the
models, user-specified constraints are effectively incorporated
into the bottom-up aggregation process.

3.4. Graph-cut segmentation (GCS)

The graph-cut segmentation (GCS), proposed by Brown et al.
[5], utilizes the minimum graph-cut to determine optimal part
boundaries. The core of this algorithm is the graph-cut formula-
tion, minimizing a cost function that captures the hard constrains
provided by the user interactions and the soft constraints indicat-
ing the relationships between adjacent vertices of the 3D model.
Given the set of vertices P, the unordered set of vertex pairs N
representing mesh edges, and the binary partitioning vector
A¼ ðA1, . . . ,Ap, . . . ,AjPjÞ, the cost function E(A) can be defined as

EðAÞ ¼ l
X
pAP

RpðApÞþ
X
fp,qgAN

Bp,qðAp,AqÞ, ð2Þ

where Rpð�Þ denotes the penalty cost for incorrectly labeling
according to the user constraints, and Bp,qð�,�Þ denotes the sum
of the costs of edges along the partition boundary, aiming to
encourage spatial coherence between similar neighboring vertices
on the surface. For the graph-cut segmentation to be effective, the
weight of the edge in N is set to Bp,q ¼ jnp � nqj, where np and nq

are the respective surface normals of adjacent vertices p and q

along the edge. An optimal minimization of Eq. (2) can be
obtained by using a min-cut/max-flow algorithm. To achieve
interactive speed for larger models, a self-building octree hier-
archy is used to represent the vertices of the model, with leaf
nodes generally set to a maximum of 10 vertices per leaf cell. The
representative superpoint for each leaf is formed by the vertices
in the corresponding leaf, with a surface normal defined as the
average of the vertices’ normals, and the parent cell normals are
represented by weighted averages of the child cell normals.
Accordingly, the adjacency of octree cells is used as the graph
adjacency, and the edge weights are calculated using the super-
point normals.

3.5. Harmonic field based method (HFM)

Meng et al. [19] proposed a harmonic field based method
(HFM) for interactive mesh segmentation. It starts with the user’s
strokes, specifying a foreground seed set U and a background seed
set V. By solving the following Poisson equation:

DF¼ 0, ð3Þ

with boundary constraints FðxÞ ¼ 1,xAU and FðxÞ ¼ 0,xAV ,
a harmonic field is generated on the surface. The harmonic field
is smooth and can be viewed as a smooth interpolation between
the constraints. The method then modifies the harmonic field to
reflect the geometric features of the mesh. The graph-cut techni-
que is then applied to produce the segmentation results that are
consistent with the user intention and the surface features.

The more recent work of a different UI—cross-boundary
brushes [25], also uses a harmonic field on the mesh for
segmentation. The harmonic field is generated by the Poisson
equation with constraints defined by the endpoints of the brush
across the cutting boundary. Then, a multi-scale isoline selection
scheme is designed to select the best isoline automatically as the
final cutting boundary. However, the isoline does not reflect the
local geometric features. Thus, multiple cross-boundary strokes
are generally needed to generate the expected cutting results.

M. Meng et al. / Computers & Graphics 35 (2011) 650–660652
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We combine the advantages of the above two methods in the
HFM method for evaluation. Specifically, we use foreground/
background sketches and use the modified geometric aware
harmonic field as in [19]. We compute the cutting boundary
based on isolines as in [25] and use its method for fast updating
the harmonic field when the users specify additional sketches.

3.6. Optimization of segmentation boundaries

Most of these algorithms employ additional optimization
methods for optimizing the segmentation boundaries. Various
methods have been proposed, such as geometric snake, graph cut,
and subdivision, to refine the cutting contours as a postproces-
sing. A more recent work [24] proposed a geodesic curvature flow
based method for optimizing the cutting boundaries. Actually,
most boundary optimization methods can be applied to each of
the algorithms. For the purpose of fair and consistent compar-
isons of these algorithms, we do not use any boundary optimiza-
tion in any of the algorithms in our evaluation.

4. Evaluation system and task assignments

In this section, we describe our design of the evaluation
platform.

4.1. Ground-truth corpus

Our ground-truth corpus is constructed based on the Princeton
segmentation database [6]. Considering the characteristics of
interactive segmentation, we select 18 categories from the data-
base with five models in different poses from each category,
except tables owing to their strong symmetry. These models are
chosen so that they have a variety of poses and tessellations that
which might affect the segmentation algorithms.

Each model of the corpus has an average of 11 segmentations.
We chose one part for each model that could be unambiguously
described to the user for extraction. The parts were chosen to
cover various shapes such as flat parts, sphere-like parts, and
cylinder-like parts. For the clarity of the task description,
we associated each part task with several images of the part
segmentation from the model it belongs via different perspec-
tives. Fig. 2 illustrates the models selected from the corpus, one
from each category, with one segmentation per model. See
Supplementary material for all the models and their selected
parts.

4.2. Evaluation system

To evaluate the various algorithms, we have implemented a
system that uses sketch-based user interfaces with consistent
capabilities for participants to segment the semantic parts from
the models in a uniform way. All five algorithms mentioned in
Section 3 have also been implemented and integrated in the
system.

System overview: Fig. 3 shows a screen shot of our system.
After loading a model into the system, several images that reflect
the requirement of segmentation from different view points are
displayed in the ‘‘Evaluation panel’’ located on the right of the
system (shown in Fig. 3(b)). The user can drag the scroll bar at
‘‘Change view’’ to browse the images to see which part needs to be
cut out from the model. Afterwards, the user can freely rotate and
scale the model to an appropriate view direction. Then the user
can draw strokes on the image plane (blue for foreground and red
for background) by pressing the left and right mouse buttons,
respectively, to specify the required parts on the model. After

marking the strokes, the user can inspect the segmentation result
on the screen and decide whether to specify new strokes to refine
the segmentation. The corresponding segmentation result is
updated when new strokes are marked. The system automatically
records each update of the segmentation as a new refinement.

Training mode: Our system provides two operation modes for
users: training mode and evaluation mode. In the training mode,
users are asked to get familiar with the system by playing with

Fig. 2. Models in our ground-truth corpus, one segmentation per model of each

category. Numbers in brackets denote vertices and triangles of models, respectively.

Fig. 3. A screen shot of our interactive segmentation system. (a) The interactive

segmentation system in evaluation mode. (b) Task panel for evaluation. (c) Timer

for restricting users to a maximum of 5 min per task. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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some sample models provided by the system. During the training
process, users need to first know which part is required to be cut
out from the loaded model by checking the images shown on the
‘‘evaluation panel’’ associated with the model. The users then
specify the foreground and background strokes on the model. An
algorithm is randomly chosen to do the segmentation. The users
then decide whether more strokes are needed to refine the
segmentation.

Evaluation mode: After being trained, users can switch the
system to the Evaluation mode (shown in Fig. 3(a)). The users are
required to load a model into the system and familiarize them-
selves with the segmentation task by viewing the images asso-
ciated with the model. Once they are ready, they can click the
‘‘Begin’’ button and start to extract the required part from the
model by drawing the strokes over the mesh, using different
algorithms in an unknown order.

Timer: To preventing participants from spending too much
time on refining their final results, it is necessary to impose a
reasonable time limit on each task (shown in Fig. 3(c)). Each task
is restricted to a maximum of 5 min, and users are allowed to
proceed to the next task earlier when they have finished their
current segmentation.

4.3. Task assignments

Over 100 individuals participated in our experiment, of which
30 participants had experience in geometry processing, 40 parti-
cipants were familiar with human–computer interaction, and the
rest needed to be trained for the task. In all, there were 79 males
and 26 females. The ages ranged from 21 to 29 years, with an
average of 24. Most of the participants were computer science
graduates, and none of them has any particular prior experience
in interactive mesh segmentation. A user guide and sufficient
time were given to each participant, to help him/her get familiar
with the system.

Corpus division: Our corpus contains 90 models, 18 categories
with five models in each category. Each model is associated with
several images describing the required part. For the purpose of
acquiring segmentations from participants for each model in the
corpus, we divided the ground-truth set randomly into 18 sets,
ensuring that each set contains five models from different
categories and each set has different types of part shapes.

Task for each participant: Each participant was assigned to
segment the models of one set, each model with five segmenta-
tions using five interactive algorithms, respectively. To minimize
the bias, five interactive algorithms were distributed to the
participant in an unknown order. After loading a mesh model,
the participant was asked to cut the required part out of the mesh
using different algorithms successively, without knowing the
order of the algorithms.

Questionnaire: Each participant was assigned to fill out a short
questionnaire after completing the assigned tasks (extracting the
required part from mesh model using all five algorithms). The
questionnaire included a series of questions related to the
evaluation of the algorithms. For instance, users were asked to
rate the following questions on a scale of 1–5: how easily the
users specified the segmentation, how fast they carried out their
initial segmentations, how fast they refined their segmentations,
and how accurate they considered their final segmentations,
where 1 denotes the lowest score and 5 denotes the highest
score. After answering all the questions, participants were asked
to rate the interactive algorithms again on a scale of 1–5,
indicating how effective they perceived these algorithms to be.
Each question was answered in the order of the algorithms used,
which was unknown to the users so as minimize bias. See the
details in Supplementary materials.

4.4. Collected experiments

The above tasks were carried out over a period of two weeks. We
had collected 2625 segmentations, of which 2310 were accepted
and 315 were discarded as the segmentation conflicted with the
requirements of the task. By distributing the model sets to partici-
pants equally, each model was segmented an average of five times
by each algorithm. Thus, the stability of the interactive algorithms
can be evaluated effectively based on these segmentations.

5. Accuracy measurement

The significant difference between automatic and interactive
segmentation algorithms is that interactive segmentation algo-
rithms require attention from the user. The interactions provided
by the users usually have a profound effect on the resulting
segmentations. To evaluate the interactive mesh segmentation
algorithms effectively, three criteria need to be considered [18]:

� Accuracy: the degree to which the extracted part corresponds
to the ground-truth.
� Efficiency: the amount of time or effort required to perform the

desired segmentation.
� Stability: the extent to which the same result would be

produced over different segmentation sessions when the user
has the same intention.

It is noteworthy that these criteria are highly related for
interactive segmentation algorithms. In particular, accuracy and
efficiency are interdependent: the more time the users spend, the
more accurate segmentations they obtain. We only discuss the
issues of accuracy measurement in this section, the other two will
be discussed in the next section.

Following prior work in computer vision, the existing mea-
sures used to evaluate mesh segmentation can be classified into
three categories [4]: boundary matching, region difference, and
non-parametric tests. Corresponding to the problem of our con-
cern, we describe several metrics to evaluate how well interactive
segmentation matches the ground-truth.

5.1. Boundary measure

The boundary measure is defined to compute the matching
degree between the cut boundaries of two interactive segmenta-
tions in our study.

Chen et al. [6] described a measure called the cut discrepancy

to measure the distances between cuts for evaluating automatic
segmentations. Let S1 and S2 be two segmentations of surface
mesh, and their respective sets of points on the cut boundaries
C1 and C2. Let DCD be the directional function defined as
DCDðS1,S2Þ ¼meanfdGðp1,C2Þ,8p1AC1g, where dGðp1,C2Þ ¼minfdG

ðp1,p2Þ,8p2AC1g is the geodesic distance from a point p1AC1 to
cuts C2. Based on considerations of symmetry and scaling effects
of the metric, the cut discrepancy between S1 and S2 is defined as

CDðS1,S2Þ ¼
DCDðS1,S2ÞþDCDðS2,S1Þ

avgRadius
, ð4Þ

where avgRadius is the average Euclidean distance from a point on
the surface to the centroid of the mesh.

We adopt this boundary measure for evaluating the boundary
matching degree of the interactive segmentation in our study.
Specific to our problem, the cut boundary of the interactive
segmentation is usually a single curve embedded in the surface
relative to the models with genus zero.

M. Meng et al. / Computers & Graphics 35 (2011) 650–660654
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5.2. Region measure

Region measures are defined to compute the consistency
degree between the part of interest produced by interactive
segmentations in our study.

Chen et al. [6] described three measures related to region
differencing: the Hamming distance, the Rand index and the
consistency error. We adopt these region-based measures to
evaluate interactive segmentations in our study. In our case, we
assume that S1¼{S1

1, S2
1} and S2¼{S1

2,S2
2} are two interactive

segmentations.

5.2.1. Hamming distance

The Hamming distance measures the region difference
between the respective sets of segmentations S1 and S2. The
directional Hamming distance is defined as: DHðS1 )

S2Þ ¼
P

iJSi
2\S

it
1J where the operator \ denotes the set difference,

JxJ denotes the cardinality of set x, and it ¼ argmaxkJSi
2 \ Sk

1J,
which finds the closest segment in S1 to the segment Si

2 in S2.
Considering S2 as the ground-truth, the Hamming distance can be
defined as the average of the missing rate and the false alarm
rate:

HDðS1,S2Þ ¼
MrðS1,S2ÞþFrðS1,S2Þ

2
, ð5Þ

where the missing rate is MrðS1,S2Þ ¼DHðS1 ) S2Þ=JSJ and the
false alarm rate is FrðS1,S2Þ ¼DHðS2 ) S1Þ=JSJ.

5.2.2. Rand index

The Rand index is computed as the ratio of the number of pairs
of mesh elements (e.g., vertices or triangles) with compatible
label relationships in S1 and S2. Denote by s1

i and s2
i the segment

IDs of triangle i in S1 and S2 and by N the number of triangles in
the mesh; Cij¼1 if s1

i ¼s1
j and Pij¼1 if s2

i ¼s2
j . The region measure

based on the Rand index is defined as

RIðS1,S2Þ ¼
n

2

� ��1 X
i,j,io j

½CijPijþð1�CijÞð1�PijÞ�, ð6Þ

where CijPij¼1 and (1�Cij)(1�Pij)¼1 indicates that triangles i and
j have the same and different id in both S1 and S2, respectively.

5.2.3. Consistency error

The consistency error measure is based on computing a local
refinement error, which represents the ratio of the number of
elements (e.g., vertices or triangles) not shared between the
segments S1 and S2. Denote by R(S, fi) the segment in segmenta-
tion S that contains triangle fi; the local refinement error is
defined as

EðS1,S2,fiÞ ¼
JRðS1,fiÞ\RðS2,fiÞJ

JRðS1,fiÞJ
: ð7Þ

Given the local refinement error, the two region measures global
consistency error (GCE) and local consistency error (LCE) are
defined as:

GCEðS1,S2Þ ¼
1

n
minfEg

12,Eg
21g, ð8Þ

LCEðS1,S2Þ ¼
1

n

X
i

minfEl
12,El

21g, ð9Þ

where Eg
12 ¼

P
iEðS1,S2,fiÞ,E

g
21 ¼

P
iEðS2,S1,fiÞ,E

l
12 ¼ EðS1,S2,fiÞ, and

El
21 ¼ E(S2, S1, fi).

5.2.4. Binary Jaccard index

McGuinness and O’Connor [18] also described a region mea-
sure based on the binary Jaccard index to compare the object

accuracies of interactive image segmentations. We extend it to
measure the region accuracies between two parts in mesh
segmentation. Specifically, the region measure based on the
binary Jaccard index is defined as

JIðS1,S2Þ ¼
JS1 \ S2J

JS1 [ S2J
: ð10Þ

5.2.5. Normalized measures

In order to quantify the similarity (the higher the number, the
better the segmentation) between segmentations rather than the
dissimilarity, we define the measure NCD(S1,S2)¼1� CD(S1,S2) as
the normalized cut discrepancy to quantify the similarity of the
cut boundary, NHD(S1,S2)¼1 � HD(S1,S2) as the normalized
Hamming distance, and NLCE(S1, S2)¼1� LCE(S1, S2) and NGCE(S1,
S2)¼1 � GCE(S1, S2) as the normalized local consistency error and
global consistency error, respectively.

6. Analysis

Based on the experimental results, in this section we present
our analysis and comparisons among the different foreground/
background sketch-based interactive segmentation algorithms.

6.1. Accuracy

To study the accuracy of each algorithm, we computed:

� the average final accuracy: the average boundary and region
accuracy measured when the participant had finished the task
or the task timing was up, across all the models for each
algorithm,
� the variance of the final accuracy: the variance of the boundary

and region accuracy measured when the participant had
finished the task or the task timing was up, across all the
models for each algorithm

using the accuracy measures introduced in Section 5.
Boundary and region accuracy: Fig. 4 shows the evaluation of

the average boundary and region accuracy, computed across all
the models for each algorithm. Higher bars represent better
accuracy. According to Fig. 4(a), the best performing algorithm,
in terms of the measured boundary accuracy, is EMC. Further-
more, according to Fig. 4(b), the best performing algorithms, in
terms of all the region accuracies, are EMC and RWS, which
perform equally well. In both cases, GCS has the worst perfor-
mance, perhaps due to its relatively simple edge weights of the
graph associated with the mesh model. From Section 3, we know
that both RWS and HFM depend on the global solution of the
Poisson equation. However, HFM performs relatively poorly,
probably because its cutting boundary is composed of an isoline
of the harmonic field so it cannot effectively respect the geo-
metric features of the models.

Variance of accuracy: Fig. 5 shows the evaluation of variance of
the boundary and region accuracy, computed across all the
models for each algorithm. Lower bars represent better consis-
tency. According to this figure, the variances of accuracy of all the
proposed measures suggest that RWS has the most stable perfor-
mance within the segmentations of all the models, followed by
HAE, and the other three algorithms have comparable stability.
RWS may perform more stably due to the global property of
Poisson equation it solved, while EMC probably performs less
stably due to the local property of region growing that it employs.

From the comparison, we can see that the proposed evaluation
measures have significant consistency with one another.
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6.2. Efficiency

We evaluate the efficiency of these segmentation algorithms
as follows.

Interaction time: Fig. 6 shows the time required for segmenta-
tion and user interaction for each algorithm, averaged over all the
models. Several observations can be drawn from this figure. Users
spent the least amount of time on EMC and the most with HAE.
Furthermore, HFM slightly underperforms EMC and obviously
outperforms the other three algorithms for the averaged mea-
sured efficiency. Although both HFM and RWS solve the Poisson
equations, which can be reduced to the sparse linear equations,
HFM evidently outperforms RWS because HFM employs some
numerical factorization updating techniques to solve the linear
system more efficiently when new sketches are added.

Updating time for new sketches: Obviously, accuracy and
efficiency are interdependent: the more time users spend, the
more accurate segmentations they obtain. To completely illus-
trate the performance of each algorithm, the relationship between
the number of updates and accuracy for all algorithms is shown in
Fig. 7. The accuracy referred to the figure is the region accuracy,

Fig. 5. Comparison of interactive segmentation algorithms by overall variance of

boundary accuracy and region accuracy. (a) Variance of boundary accuracy;

(b) variance of region accuracy.

Fig. 6. Average time required for segmentation and user interaction with each

algorithm.

Fig. 4. Comparison of interactive segmentation algorithms by overall average

boundary accuracy and region accuracy. (a) Average boundary accuracy;

(b) average region accuracy.
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measured using the binary Jaccard index. Observing the average
measured accuracy over user interactions for each algorithm, we
can see that EMC and RWS have comparable performance while
EMC provides better final accuracy. HAE gives the best initial
segmentation while producing small changes during the whole
update process. Comparatively, despite its relatively poor initial
segmentation, HFM also provides superior final accuracy. Further-
more, GCS gives the poorest initial segmentation and provides
satisfactory final accuracy as additional sketches are added.

Number of interactions: We also compare the numbers of
interactions required of the users. Fig. 8 shows the averaged
number of interactions (drawing strokes) required for segmenta-
tion with each algorithm averaged over all the models. We can
see that EMC requires the minimal amount of user interaction,
while GCS requires the maximal amount of user interaction
during the whole segmentation process. It is worth noting that
EMC requires less user participation than RWS although they
produce a comparable final accuracy of segmentation. This
implies that RWS tends to need more user interactions to achieve
a high accuracy via iterative improvement. Comparatively, GCS
requires more user participation to achieve satisfactory final
segmentation than the other four algorithms.

6.3. Stability

To study the stability with respect to different user inputs, we
computed:

� The averaged normalized coverage: the percentage of triangles
with the same labels (foreground or background) found when
using different user inputs per model, averaged across all
models for each algorithm.

according to the stability test in [15]. Consequently, the stability
is implicitly evaluated: if a good segmentation is repeated by
multiple users, the average normalized coverage measure will be
large. The stability is tested for the initial segmentation and the
final segmentation, respectively. Fig. 9 shows the comparison of
the stability test for each algorithm.

According to the results shown in Fig. 9 for the initial
segmentation, we see that RWS and HAE are more stable, that is
to say, they are less sensitive to different user inputs. Compara-
tively, EMC is more sensitive to different user inputs due to the
greedy region growing method it employs. HFM is less stable
because the isoline is more sensitive to different user inputs, GCS
is also unstable because of the average accuracy of the segmenta-
tion it obtained. In comparison, the levels of stability of all five
algorithms for the final segmentation shown in Fig. 9 are very
close to each other. This result is not surprising. For example,
although EMC and HFM are a bit more sensitive to the different
strokes drawn by the user, they are both rapid at updating and
involve more user interactions, which allows these two algo-
rithms to obtain higher stability.

In particular, the stability test for the initial segmentation
shows results closely correlated with Fig. 5. Both figures suggest
almost the same relative performance of all five interactive
algorithms.

6.4. Comparisons within shape classes

To understand how the segmentation algorithms work for
specific types of objects, we also compare the suitability of the
algorithms on different shape classes, i.e., man-made objects,
organic objects, smooth objects, and objects with sharp features.
Table 2 shows the performance of five algorithms for each object
class. We rank the algorithms according to the Rand index metric
averaged over models of each shape class in the table: 1 is the
best and 5 is the worst. We find that no algorithm is the best for

Fig. 7. The performance of each algorithm during the updating process.

Fig. 8. Averaged number of interactions required for each algorithm. Fig. 9. Stability test for each algorithm.
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every class, and the algorithms were not particularly designed for
specific shape classes.

6.5. User feedback

According to the answers indicated by the participants on a
scale of 1–5 in the questionnaire, we have measured the
perceived accuracy and efficiency, averaged across the answers
of all participants. Both the initial segmentation and the update
were taken into account in the questionnaire. The survey results
are shown in Fig. 10. From the results, we can see that the

perceived accuracy and efficiency are roughly consistent with the
average measured accuracy and efficiency, except that EMC and
HFM received higher ranks compared with their performance in
terms of accuracy profiles (Fig. 4).

In addition to the accuracy and efficiency, the participants
were also asked to rate each of the evaluated algorithms on a
scale of 1–5 for a series of questions listed in the questionnaire,
again with higher ranks indicating better performance. Fig. 11
shows the survey results of the questionnaire.

Obviously, most of the users preferred EMC and HFM over the
other three algorithms. From Figs. 6 and 7, it can be seen that both
EMC and HFM give good initial segmentation and are rapid at
updating which can involve more additional interactions to
provide iterative improvements in the for segmentation, despite
their performance in terms of stability profiles (Fig. 9).

6.6. Comparison with automatic algorithms

In this part, we compare the interactive segmentation algo-
rithms with the automatic ones to better understand their
performance. We pick one of the automatic algorithms, the
randomized cuts algorithm [10], for comparison as it combines
many other automatic segmentation algorithms and performs
relatively better than the other automatic algorithms, as shown
in [6]. The segmentation results obtained by the randomized cuts
algorithm were from the Princeton segmentation database [6].
We discarded those segmentation results that are not meaningful
for fair comparison. Fig. 12 shows the comparison results on both
the average boundary accuracy (NCD) and the average region
accuracy (RI and NGCE). From the results we can see that the
randomized cuts algorithm performs worse than EMC and RWS. It
is surprising that it performs better than some of the other
interactive algorithms.

6.7. Summary

The above experimental results are useful not only to study the
properties of the current interactive segmentation algorithms but also
to inspire new interactive segmentation techniques. Several observa-
tions on the characteristics of the evaluated algorithms, which are
believed to be helpful and beneficial, include the following:

� In terms of the average measured accuracy, EMC and RWS
surpass the performance of the other three algorithms.

Table 2
Comparison of the algorithms for different shape classes. Entries represent the

rank of the algorithm according to the Rand index evaluation metric (1 is the best

and 5 is the worst).

Shape class EMC RWS HAE GCS HFM

Man-made 2 1 4 5 3

Organic 1 2 3 5 4

Smooth 1 2 3 5 4

Sharp 3 1 5 2 4

All 2 1 3 5 4

Fig. 10. The survey of perceived accuracy and efficiency. (a) Perceived accuracy;

(b) perceived efficiency.

Fig. 11. Results of user feedback for each algorithm.
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� In terms of the average measured efficiency, EMC outperforms
the other four algorithms, followed by HFM, while HAE
performs worst.
� In terms of the average measured stability, RWS and HAE

provide better performance than the other three algorithms
for the initial segmentation, and EMC and HFM give compar-
able performance for the final segmentation despite their
poorer performance for the initial segmentation.
� EMC requires the least amount of time and produces fairly

accurate segmentation results, and RWS provides comparable
segmentations.
� Both EMC and HFM allow highly efficient refinement during

the updating process.
� HAE gives the best initial segmentation result and tends to

produce smaller changes as additional interactions are added
compared with the other four algorithms.

From the above results and observations, it is clear to see that
no interactive algorithm is better than all the others. However, it
is quite surprising that the first published interactive mesh
segmentation algorithm, EMC, performs relatively better than
the others across most of the performance factors such as
accuracy and efficiency. Probably the reasons are (1) the region
growing scheme in EMC is very efficient; (2) the feature-aware

isophotic metric considered in the region growing fully respects
the minima rule and saliency theory so that the obtained regions
are accurate in terms of capturing the geometry features; (3) the
simple scheme allows very quick feedback during the update
process.

In the questionnaire, most of the users preferred EMC and HFM
over the other three methods. This is probably because EMC and
HFM allow highly efficient refinement (and thus quick feedback)
during the update processing. We are much inspired by this
observation, which suggests a critical insight on designing an
interactive system. If a user wants to perform some interactions
in using a program, he/she wants to have instant update feedback
once he expresses his intention interactively. He might not care
about how many interactions are required, but he does care about
how fast feedback he will get in the operations. A quick update
process should be required in designing an interactive system. On
the other hand, too many interactions will make the job tedious.
Thus, a good interactive program should require as few interac-
tions as possible and give instant feedback during the interaction.

In summary, the evaluation results and insights on the
performance of all algorithms will be useful for researchers and
practitioners who need to pick an effective mesh segmentation
algorithm for their applications.

7. Conclusion

In this paper, we have presented the first thorough evaluation of
five foreground/background sketch-based interactive mesh segmen-
tation algorithms, considering five criteria for the comparison. To
evaluate the interactive algorithms effectively, we developed an
intuitive sketch-based interface with consistent capabilities for
participants to segment the part of interest from models in a
uniform way. The evaluation was carried out via extensive user
experiments, and several interesting insights were discovered. We
believe that our work will help better understand the mechanisms
of the various sketch-based interactive mesh segmentation algo-
rithms and will inspire further studies on this topic.

Currently, the interactive segmentation algorithms are merely
evaluated based on the corpus via a series of user experiments. In
addition to the stroke variation of user inputs, there also exist
more advanced issues to be concerned for examining partition
compatibility of interactive algorithms, such as the noise and
topology variation of models. In the future we plan to enlarge the
corpus in terms of type of models and ground-truth, hoping that
the expanded corpus could offer a wealthier comparison of
interactive algorithms. It is also worthwhile to evaluate the
different sketch-based user interfaces for mesh cutting, such as
the foreground/background sketches, the cross-boundary brushes
[25], and the new paint mesh cutting approach [7].
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Fig. 12. Comparison of interactive segmentation algorithms with one of the

automatic algorithms, the randomized cuts algorithm (RC) [10]. Upper, average

boundary accuracy (NCD); Lower, average region accuracy (RI and NGCE).

M. Meng et al. / Computers & Graphics 35 (2011) 650–660 659



Author's personal copy

References

[1] Antini G, Berretti S, Bimbo AD, Pala P. 3D mesh partitioning for retrieval by
parts applications. In: Proceedings of IEEE international conference on
multimedia and expo; 2006. p. 1210–3.

[2] Attene M, Katz S, Mortara M, Patane G, Spagnuolo M, Tal A. Mesh
segmentation—a comparative study. In: Proceedings of IEEE international
conference on shape modeling and applications; 2006. p. 1–7.

[3] Benhabiles H, Vandeborre J-P, Lavoué G, Daoudi M. A framework for the
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