SMI'11

June 22 - 24, 2011

Shape Modeling International

The Interdisciplinary Center, Herzliya, Israel

A Comparative Evaluation of Foreground/Background Sketch-based Mesh Segmentation Algorithms

Min Meng Lubin Fan Ligang Liu

Zhejiang University, China

Foreground/background Sketch-based UI

- Easy mesh cutting [Ji et al. 2006]
- [Wu et al. 2007]
- [Lai et al. 2008]
- [Xiao et al. 2009]

• Easy to use

SMI'11

June 22 - 24, 2011

IDC, Herzliya, Isael

Motivation

Current State

- Lots of algorithms
- Different results and performance levels
- No work on the quantitative evaluation

How well the approaches perform?

• The first evaluation of sketch-based mesh segmentation algorithms

- 5 state-of-the-art algorithms
- 100+ participants
- A software platform
- A ground-truth segmentation data set
- Extensive analysis
- Valuable insights

This Work

Related Work on Evaluation

- Automatic Mesh Segmentation
 - Mesh segmentation a comparative study [Attene et al. 2006]
 - A survey on mesh segmentation techniques [Shamir 2008]
 - A benchmark for 3D mesh segmentation [Chen et al. 2009]
 - 7 automatic mesh segmentation algorithms
 - Publicly available data set & software

Related Work on Evaluation

- Image Segmentation
 - A comparative evaluation of interactive segmentation algorithms [McGuinness et al. 2010]

SMI'11

June 22 - 24, 2011

IDC, Herzliya, Isael

- Image Retargeting
 - A Benchmark for Image Retargeting [Rubinstein et al. 2010]

Outline

- Evaluated Algorithms
- Date Set
- Evaluation System
 - Training Mode
 - Evaluation Mode
- Experiment
- Analysis
- Conclusion

Evaluated Algorithms

Method	Algorithms	Abbreviation
Region growing	[Ji et al. 2006] * [Wu et al. 2007]	EMC
Random walks	[Lai et al. 2008] *	RWS
Bottom-up aggregation	[Xiao et al. 2009] *	HAE
Graph-cut	[Brown et al. 2009] *	GCS
Harmonic field based	[Meng et al. 2008] * [Zheng et al. 2009]	HFM

Note:

- The evaluated algorithms are marked by *
- For further details, please refer to the original papers.

• Our Data Set

- Based on the Princeton database [Chen et al. 2009]
- 18 categories

Princeton segmentation database [Chen et al. 2009]

• Our Data Set

- Based on the Princeton database [Chen et al. 2009]
- 18 categories
- 5 models in different poses from each category
- One part for each model

Princeton segmentation database [Chen et al. 2009]

• Our Data Set

- Based on the Princeton database [Chen et al. 2009]
- 18 categories
- 5 models in different poses from each category
- One part for each model

Models in our ground-truth corpus

• Our Data Set

- Based on the Princeton database [Chen et al. 2009]
- 18 categories
- 5 models in different poses from each category
- One part for each model
- Assistant images

Evaluation System

System Overview

Evaluation Panel

Evaluation System

System Overview

Training Mode

• Training Process

Evaluation Mode

Begin Task

Evaluation Mode

Rec

Algorithm's name

Users' interactions;

Time of interaction;

Run time of the

algorithm.

Segmentation results;

• Task for each participant

• Task for each participant

• Task for each participant

Questionnaire

- Personal information part
 - Gender, age, education background, experience on geometry processing
- Algorithm part
 - How easily the users specified the segmentations?
 - How fast they carried out their initial segmentations?
 - How accurate they considered their initial segmentations?
 - How fast they refined their segmentations?
 - How accurate they considered their final segmentations?
 - How stable is the method?
 - Rate the algorithm by considering the general performance.

User statistics

- 105 participants.
- 30 participants have experience in geometry processing,
- 40 participants are familiar with human-computer interaction.
- Most of them are computer science graduates.

- Collected experiments
 - One month.
 - 2625 segmentations collected
 - 2310 accepted
 - 315 discarded
 - Each model was segmented an average of 5 times by each algorithm

Criteria of Evaluation

• Accuracy

- The degree to which the extracted part corresponds to the ground-truth
- Efficiency
 - The amount of time or effort required to perform the desired segmentation
- Stability
 - The extent to which the same result would be produced over different segmentation sessions when the user has the same intention

Accuracy Measurement

Boundary Matching

The matching degree between the cut boundaries of two interactive segmentations

- Cut discrepancy (NCD) [Chen et al. 2009]

Accuracy Measurement

 S^2

 G^{\prime}

Region Difference

The consistency degree between the parts of interest produced by interactive segmentations in our study

- Hamming distance (NHD) [Chen et al. 2009]
- Rand index (RI)
- Global/Local consistency error (NGCE, NLCE)
- Binary Jaccard index (JI) [McGuinness et al. 2010]
- Normalized Measures

- the higher the number, the bettern the segmentation

Ground-truth

 S^1

 G^1

Analysis

• Accuracy

- Boundary Matching
- Region Difference

• Efficiency

- Interactive time
- Updating time for new sketches
- Number of interactions
- Stability
- User feedback
- Comparison with automatic algorithms

Boundary Accuracy

0.015 0.01 0.005 0.005 0.005 EMC RWS HAE GCS HFM

Boundary Accuracy

Variance of Accuracy

Region Accuracy

Region Accuracy

Variance of Accuracy

• Interactive time

• Updating time for new sketches

• Number of interactions

Average number of interaction

• Averaged normalized coverage

The percentage of triangles with the same labels (foreground or background) found when using different user inputs per model, averaged across all models for each algorithm.

User Feedback

Perceived accuracy

User Feedback

• Feedback for Each Algorithm

vs. Automatic Algorithms

Automatic Algorithms

- Randomized cuts algorithm (RC) [Golovinskiy et al. 2008]
- Segmentation results are from the Princeton segmentation database [Chen et al. 2009]

Object

- No interactive algorithm is better than all the others.
- EMC performs better:
 - The region growing scheme is very efficient.
 - Capture the geometry features
 - Quick feedback

Subject

- Efficient refinement
- Few interactions
- Instant feedback

Fast feedback and quick update process are more important than accuracy.

Conclusion

- Evaluation methodology for foreground/background sketch-based interactive mesh segmentation algorithms
- A software platform for evaluation
- Extensive user experiments
- Thorough analysis
- Valuable insights

Future Work

- Expand corpus and ground-truth
- Different sketch-based user interfaces

More details

• Webpage:

http://www.math.zju.edu.cn/ligangliu/CAGD/Projects/SketchingCuttingE val-FB/default.htm

- Supplementary file
- Share the data (soon!)
 - Data set
 - Segmentation tasks and assistant images
 - User data
 - Analysis data

SMI'11

June 22 - 24, 2011

Shape Modeling International

The Interdisciplinary Center, Herzliya, Israel

A Comparative Evaluation of Foreground/Background Sketch-based Mesh Segmentation Algorithms

Min Meng Lubin Fan Ligang Liu

Zhejiang University, China

