

Structure Completion of Facade Layouts

Lubin Fan^{1,2}, Przemyslaw Musialski³, Ligang Liu⁴, Peter Wonka^{1,5}

¹ King Abdullah University of Science and Technology
 ² Zhejiang University
 ³ Vienna University of Technology
 ⁴ University of Science and Technology of China
 ⁵ Arizona State University

Completing A Layout

Challenges

- We cannot only rely on observations.
- We need additional information.

This Work

• Two sources of information

observation

database

- A statistical model evaluates layouts.
- A planning algorithm generates candidates.

Related Work

• Structural image inpainting

Structure propagation [Sun et al. 2005]

Texture synthesis [Dai et al. 2013]

Statistics patch offsets [He and Sun 2012]

Planar structure guidance [Huang et al. 2014]

They cannot complete facade with large missing regions.

They cannot generate facade layouts consistent with given observations.

6

Facade modeling

Single view reconstruction [Koutsourakis et al. 2011]

Procedural facade variation [Bao et al. 2013]

Structure-preserving retargeting [Lin et al. 2011]

Tiled patterns [Yeh et al. 2013]

Related Work

Related Work

• Facade analysis

Procedural modeling [Müller et al. 2007]

F =

Rank-one approximation [Yang et al. 2012]

Shape grammar parsing [Teboul et al. 2011]

-

Symmetry maximization [Zhang et al. 2013]

Adaptive partitioning
[Shen et al. 2011]

Inverse procedural modeling [Wu et al. 2014]

Facade Representation

• Grid layout - G

Parameters role gers of e:

Example Grid *g*:

$$g. x_{0} = 2.0; \quad (e. x_{i} e. y)_{..}; \quad g. rows = 2; \quad g. columns = 4; \\ (e. w, e. h) \quad g. y_{0} = 3.0; \quad e. \ label \qquad g. \ width = \cdots; g. \ height = \cdots;$$

9

Facade Dataset

- 100 facade images
- Box abstraction
- Statistics of elements and grids

Overview

Input Statistical Model Candidate Generation

A Statistical Model for Facade Layouts

A Good Completion

- Criteria
 - It satisfies some constraints.
 - It is consistent with the observations and the layouts in database.
- Likelihood of a facade layout

 P_a : distribution of the grid attributes in the database

 $f_a(G) = \ln p_a(G)$

G: grid layout

Unary Grid Functions

- Element aspect ratio $f_{as}(g)$
- Element spacing
- Grid regularity
- Grid completeness $-f_{gc}(g)$

 $-f_{ed}(g)$

 $-f_{gr}(g)$

Binary Grid Functions

- Pattern of interleaved grids
 - $f_{gp}(g_i, g_j)$
- Grid alignment
 - $f_{ga}(g_i, g_j)$

Battleahignfrinettetrleaved grids:

pattern: AB $gap(g_i, g_j)$

Global Grid Functions

- Element compatibility $f_{ec}(G)$
- Grid coverage
- Facade border
- Facade symmetry

 $-f_{gc}(G)$

 $-f_{fb}(G)$

 $-f_{fs}(G)$

Factor Graph

• Factors

$$\mathcal{F}_{unary}(g_i) = \exp\left(w_{as}f_{as}(g_i) + w_{ed}f_{ed}(g_i) + w_{gr}f_{gr}(g_i) + w_{gc}f_{gc}(g_i)\right)$$
$$\mathcal{F}_{binary}(g_i, g_j) = \exp\left(w_{gp}f_{gp}(g_i, g_j) + w_{ga}f_{ga}(g_i, g_j)\right)$$
$$\mathcal{F}_{global}(G) = \exp\left(w_{ec}f_{ec}(G) + w_{gc}f_{gc}(G) + w_{fb}f_{fb}(G) + w_{fs}f_{fs}(G)\right)$$

Factor Graph

• The overall probability $p(G|\mathbf{w}) = \frac{1}{Z(\mathcal{F}, \mathbf{w})} \int_{\mathcal{F}} \mathcal{F}(Scope_{\mathcal{F}}(G))$ the partition function variables connected to factor \mathcal{F}

- Weight learning w
 - Maximum likelihood parameter estimation

Structure Candidate Generation

Planning Algorithm

Value of state s using Bellman's equation

Planning Algorithm

• Optimal policy

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} T(s, a, s') V(s')$$

• Actions consist of adding one single element.

Policy Design

• Policy for adding an element: $\pi(s, \lambda)$

$$\boldsymbol{\lambda} = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, \lambda_8, \lambda_9, \lambda_{10}\}$$

- Seed element (e_s) selection
- Extension direction
- Extension spacing
- Extension label
- Other parameters
 - Snapping
 - Symmetric copying

Policy Optimization

• For each facade

$$\boldsymbol{\lambda}^* = \arg \max_{\boldsymbol{\lambda}} \sum_{s' \in S} T(s, \pi(s, \boldsymbol{\lambda}), s') V(s')$$

- Genetic algorithm
- Initial policies are learnt from the database.

Crossover

$$\lambda^{a} = \{\dots, \lambda_{i}^{a}, \dots\}$$

$$\lambda^{b} = \{\dots, \lambda_{i}^{b}, \dots\}$$

Mutation

$$\boldsymbol{\lambda} = \{\dots, \lambda_j, \dots\}$$

 $\lambda_j \leftarrow \lambda_j + d, \ d \sim \mathcal{N}(0, \sigma)$

Policy Optimization

observation

a completion with a fixed specified policy

a completion using policy optimization

Results and Applications

Results

 Completion results influenced by the number of observed elements

ground truth

completions

Results

Completions of incoherent observations.

ground truth

observation

completion

An Application

Evaluation I: Structure Completion

Completion ranking test

A is more plausible.
 B is more plausible.
 They look the same.

Evaluation I: Structure Completion

- Ground truth data received 31.5%.
- Our completion received 40.2%.
- Both equally received 28.3% of all votes.

- Ground truth is more plausible.
- The completion is more plausible.
- They look the same.

Evaluation II: Scoring functions

all terms included

Leave-one-out test

observation

regularity term excluded completeness term excluded

aspect ratio term excluded

pattern term excluded

alignment term excluded

compatibility term excluded coverage term excluded

Evaluation III: Comparison

Comparison to simulated annealing

annealing

³¹

32

Limitation

• Our statistical model only considers simple pattern.

Conclusions

- A framework for structure completion of facade layouts
 - Large missing regions!
 - A statistical model to evaluate layouts
 - A planning algorithm to generate candidate layouts
- An application in the area of urban reconstruction

Acknowledgement

- Anonymous reviewers
- Research grants
 - Visual Computing Center of KAUST
 - Austrian Science Funds
 - National Natural Science Foundation of China
 - One Hundred Talent Project of the Chinese Academy of Sciences
 - U.S. National Science Foundation

Thank you!

More details about this project are available at:

https://sites.google.com/site/lubinfan/publications/2014-facade-completion

