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A B S T R A C T   

Detecting ellipses from images is a fundamental task in many computer vision applications. However, due to the 
complexity of real-world scenarios, it is still a challenge to detect ellipses accurately and efficiently. In this paper, 
we propose a novel method to tackle this problem based on the fast computation of convex hull and directed graph, 
which achieves promising results on both accuracy and efficiency. We use Depth-First-Search to extract branch- 
free curves after adaptive edge detection. Line segments are used to represent the curvature characteristic of the 
curves, followed by splitting at sharp corners and inflection points to attain smooth arcs. Then the convex hull is 
constructed, together with the distance, length, and direction constraints, to find co-elliptic arc pairs. Arcs and 
their connectivity are encoded into a sparse directed graph, and then ellipses are generated via a fast access of the 
adjacency list. Finally, salient ellipses are selected subject to strict verification and weighted clustering. Extensive 
experiments are conducted on eight real-world datasets (six publicly available and two built by ourselves), as 
well as five synthetic datasets. Our method achieves the overall highest F-measure with competitive speed 
compared to representative state-of-the-art methods.   

1. Introduction 

As one of the most common geometric primitives, ellipses often 
appear in natural and artificial scenes. In particular, 3D circular or 
elliptic objects are usually projected as ellipses on the image. Therefore, 
accurate detection and localization of ellipses from images provides us 
with a powerful tool for pattern recognition and visual understanding 
[1]. Actually, ellipse detection is broadly applied in the fields of camera 
calibration [2,3], industrial component inspection [4,5], traffic sign 
detection [6,47], cell segmentation [7], pupil tracking [8], object 
localization for the robotic platform [9], and so on. See Fig. 1 as a 
reference. 

Although ellipse detection problem has gained a lot of attention in 
literature, it is still very challenging. The major difficulties are the 
presence of noise, disturbance or occlusion by other objects, image blur 
or flaw, and varying illuminations. These issues either break the elliptic 
boundaries as several low-quality arc segments, thus make the 

differential computations such as tangents inaccurate, or leave the el-
lipse partially visible, which degrades the ellipse fitting quality. Besides, 
the requirement of fast detection for real-time scenarios further brings 
the difficulty. 

As a well-known geometric primitive detector, Hough transform (HT) 
is explored for ellipse detection by numerous work [10–15]. However, 
due to the five-dimensional (5D) parameter space of an ellipse, HT 
consumes a noticeable amount of storage and time [16,17], which 
seriously prevents its applications, especially for complicated images 
needing high-speed processing. Besides, HT suffers from the careful 
tuning of bin size and peak threshold, hence it may detect false ellipses 
or lose positive ones if the model parameters are not optimal. 

The recent methods based on the edge following technique exhibit 
promising detection performance, in which the connectivity between 
edge pixels, continuity of arcs are used [18]. Candidate ellipses are 
generated by incremental least-squares fitting or arc grouping. However, 
direct ellipse fitting for short arcs inevitably results in errors [19]. 
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Although other methods first group arcs together, complex arc grouping 
strategies are usually designed, where differential calculations or HT are 
invoked, hence they are more sensitive to noise or less efficient. 

Different from aforementioned methods, in this paper, we introduce 
a new ellipse detector by a more effective arc grouping scheme, aiming 
to improve the detection ability in both accuracy and efficiency. We use 
Depth-First-Search (DFS) to extract continuous edge curves, followed by 
the identification of sharp corners and inflection points to attain smooth 
arcs. Then, the convex hull is first introduced to distinguish the con-
vexity of arc pairs, along with the fast computation of arc distance, 
length, and directions. Due to the avoidance of calculations of gradients 
and tangents for the edge pixels, our method is more robust to noise. 
Based on these constraints, a sparse directed graph is built, by which arc 
pairs and their connectivity can be fast accessed to generate candidate 
ellipses. Finally, a stringent verification and a discriminative clustering 
are applied to further improve the detection accuracy. In a nutshell, the 
contributions of this work are as follows: 

• a fast and accurate ellipse detector competent of detecting compli-
cated real-world images, as well as occluded, overlapping, concen-
tric, and concurrent ellipses;  

• a novel arc grouping scheme based on the efficient computation of 
the convex hull and sparse directed graph, together with a more 
discriminative clustering criterion to depress repetitive ellipses, and  

• the superior performance with less time consumption on a series of 
datasets compared with the representative state-of-the-art methods. 

The rest of this paper is organized as follows. In Section 2, we briefly 
review the most related work from the perspective of ellipse generation 
and verification. The detailed steps of our method are presented in 
Section 3. Then we describe the datasets, experimental results, and 
performance of the proposed approach in Section 4. A general conclu-
sion and future work are given in Section 5. 

2. Related work 

The significance of ellipse detection is witnessed by the large amount 
of work presented in the literature. In general, they can be classified as 
Hough transform based methods and edge following techniques. 

2.1. Hough transform 

Most of the traditional methods for ellipse detection rely on HT [20] 
to estimate the parameters, which casts the detection problem into a 
peak finding process. The basic principle of HT is voting each edge pixel 
to a 5D parameter space, and then the local peak exceeding a certain 
threshold is selected out as an ellipse. Although simple for imple-
mentation, it is usually unpractical to directly apply HT to ellipse 
detection in real images, due to the expensive storage and time load, 
which are O(m5) and O(n5) [17], respectively. To reduce the memory 
consumption, accelerate the detection, and improve the accuracy of the 
standard HT, a great number of variants are put forward. Randomized HT 
(RHT) [21] and probability HT (PHT) [22] sample subset of pixels rather 
than all pixels for voting, and thus a many-to-one scheme is built to 
replace the primary one-to-many scheme.  McLaughlin [13] extends 
RHT to detect ellipses by randomly selecting three non co-linear points, 
but it is sensitive to occlusion and overlapping ellipses. Lu et al. [23] 
propose the iterative RHT to circumvent the noise susceptibility of RHT, 
but it has to divide an image into sub-images for multiple ellipse 
detection. On the other hand, some methods combine geometric prop-
erties of ellipses with HT to lower the voting space. Xie and Ji [24] es-
timate the semi-axis length of the hypothetical ellipses to reduce the 5D 
space to 1D. Similarly, Chia et al. [25] use the foci feature to realize the 
same effect. Geometric symmetry is also explored to decompose the 
voting space, by which elliptic centers are first located and then the 
remaining parameters are solved [26,27]. However, these methods are 
easily deteriorated by occluded or semi ellipses. Besides, we point out 
that HT based methods are still inefficient in practice, prone to generate 
false detection with the number of ellipses increasing, suffer from noise 
and background clutter, and take much effort to tune the required pa-
rameters such as the bin size and peak threshold [18]. 

2.2. Edge following 

Different from HT working on the pixel level, edge following 
methods utilize continuous arcs for ellipse detection, in which edge 
curves are extracted and geometric characteristics such as convexity or 
tangents are explored. Compared with HT, edge following methods are 
more efficient, and currently are the benchmark among the ellipse 
detection field. For instances,  Kim et al. [29] first extract arcs approx-
imated by short line segments, and then frequently use the least-squares 
fitting to estimate elliptic parameters.  Libuda et al. [30] improve the 

Fig. 1. A wide variety of applications of ellipse detection in the real world, which provides us with a powerful tool for multiple visual understanding tasks.  
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performance of [29] with less memory consumption.  Mai et al. [31] 
inherit the idea of [29], but further link line segments to form arcs based 
on the adjacency and curvature constraints. However, due to the out of 
consideration for validating candidate ellipses, there are multiple false 
detection.  Chia et al. [32] adopt a split and merge scheme for arcs, 
where co-elliptic arc pairs are grouped as an alignment problem. 
Nevertheless, the complex and iterative optimization process hinders its 
real-time usage in practice. The detector proposed by  Prasad et al. [1] 
makes use of the information of edge convexity and curvatures for arc 
grouping, in which the search region is first determined, followed by a 
line segment length judgment. Due to the incorporation of tangents and 
line-arc intersecting, this method [1] is more complicated than our 
proposed method. Although overall improvements are attained, it suf-
fers from long computational time.  Fornaciari et al. [33] propose a fast 
ellipse detector for the embedded vision system, in which arcs are 
classified into four quadrants based on the gradient computation, and 
then parameters are estimated by the parallel chord theorem and 2D HT 
voting.  Jia et al. [34] promote the performance of [33] by introducing a 
projective invariant to prune line segments and group arcs. However, 
both [33,34] encounter the same problem, that is the number of arcs for 
grouping must be at least three, which is impractical for occluded or 
semi ellipses. Dong et al. [35] take the similar scheme of [33] and 
incorporate the gradient analysis, but also divide the arcs into four 
quadrants, hence inevitably break the integrity of complete ellipses. 
Recently,  Lu et al. [18] revisit the line detection method proposed by 
Pătrăucean et al. [36] to attain a high-quality ellipse detector, because of 
the iterative linking of line segments and voting for arcs, the method is 
much slower than [34]. Meng et al. [37] design an arc adjacency matrix 
(AAM) to represent the arc pair relationship, in which curvatures and 
tangents are computed to make AAM sparse. However, as [24,38] 
pointed, curvatures and tangents are more sensitive to noise than edge 
points. 

3. Methodology 

Our method adopts a standard edge following framework, which 
contains three main steps: (1) edge detection and elliptic arc extraction; 

(2) arc grouping and candidate ellipse generation; (3) ellipse validation 
and clustering. The workflow of our method is shown in Fig. 2. We 
explain the details of each step in the following. 

3.1. Edge detection and elliptic arc extraction 

Given an input image, the very first step is to extract the edge map. 
Here, we implement an adaptive Canny detector [28] for this purpose, 
because of the efficiency and avoidance of parameter tuning. The higher 
threshold ensures that only 10% of the image pixels are marked as edge 
pixels, while the lower threshold equates 0.3 times of the higher 
threshold. To attain branch-free curves as shown in Fig. 3, given a seed 
point, we use the Depth-First-Search (DFS) to expand continuous curves 
according to the 8-connected domain of the edge points. 

After the attainment of branch-free curves, we continue to extract 
smooth arcs. To this end, a parameter free method [39] improved from 
Ramer-Douglas-Peucker (RDP) algorithm [40] is first applied to simplify 
curves via a series of line segments {li = Pi− 1Pi

⃒
⃒Pi ∈ R2}

n
i=1, by which we 

can effectively compute both the magnitude and direction of edge cur-
vatures, as illustrated in Fig. 4(a). An angle αi is a sharp corner, indi-
cating the major variation in curvature magnitude, if 

cosαi =
l
→

i

‖ l
→

i‖2

⋅
l
→

i+1

‖ l
→

i+1‖2

≤ cosThθ, (1)  

where l
→

∗ is the directional vector of the line segment l∗, and Thθ is the 
angle threshold. Further, a point between li and li+1 is an infection point, 
indicating the variation in curvature direction, if 

Fig. 2. The workflow of our proposed method. (a) Input image; (b) edge detection by adaptive Canny detector [28]; (c) arc extraction via the identification of sharp 
corners and infection points; (d) candidate ellipse generation after arc grouping; (e) finally detected ellipses after validation and clustering. The proposed method is 
competent to detect ellipses in complex real-world images. 

Fig. 3. The two bifurcation points P1 and P2 separate the edge curve into four 
branch-free curves indicated by different colors. 

Fig. 4. (a) An edge curve is approximated by nine line segments. From the 
inner and cross products computation, we find that α3 is a sharp corner while P6 

is an inflection point. (b) The aspect ratio of the minimum area bounding box 
(dashed rectangle) is used to remove straight segments for fast detection. 
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Hence, α3 is a sharp corner while P6 is an inflection point in Fig. 4(a). 
Then we split curves at these points to obtain arc segments. 

To speed up the following processing, we further remove straight 
segments based on the minimum area bounding box as illustrated in 
Fig. 4(b). We remove the segment if its aspect ratio 

max{Height,Width}
min{Height,Width}

> Thr.

Since arc quality is critical for arc grouping, we further access each arc 
Arci by computing its inlier ratio via ellipse fitting, which is defined as 

I(Arci) =
1

|Arci|

∑

p∈Arci

1{dist(p, e)< ε}, (3)  

where 1 is the indicator function and equates to one if and only if the 
distance from the edge pixel p to the ellipse e is less than ε equal to one 
pixel in default. Arcs with low inlier ratio, i.e., I(Arci) < Thir, where Thir 
is the threshold, are regarded as non-elliptic arcs thus are deleted. To 
keep consistency between different arcs, edge points of each arc are 
stored in the counter-clockwise order. 

3.2. Arc grouping and candidate ellipse generation 

Since short arcs may result in major fitting errors, we first group 
them from the same ellipse together by a local to global scheme. The 
local search aims to link adjacent arc pairs caused by noise interference, 
while the global process elaborates to group distant ones. 

We introduce convex hull to represent the ellipse convexity, as 
illustrated in Fig. 5. For every arc pair, supposing k points are sampled 
on each arc, referred to as {a1, a2,⋯, ak} and {b1, b2,⋯,bk}, then there 
are totally 2k points involved for convex test, thereby 2k cross products 
are calculated. Given that each arc is convex, actually we merely need to 
check the following four cross products: 
{

ak− 1ak
̅̅̅ →× akb1

̅̅→
, akb1
̅̅→

× b1b2
̅̅→

bk− 1bk
̅̅̅ →

× bka1
̅̅→

, bka1
̅̅→

× a1a2
̅̅→. (4)  

In our method, for efficiency, we directly sample the endpoints and 

Fig. 5. Convex hull test with k points on each of the two arcs.  

Fig. 6. Grouping arc pairs based on the convex hull computation, where Si, Ei, and Mi are the endpoints and midpoints of Arci. The arcs in Case (d) form a convex 
hull, thereby they can be grouped together, while the others cannot. 
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midpoints of two arcs to define the convex hull, as shown in Fig. 6, 
thereby there are totally six points. To check whether the polygon 
formed by these six points is convex, we simply judge whether the sign 
of the cross product of adjacent line segments are all positive, and two 
arcs Arci, Arcj are said constituting a convex hull if   

From the local perspective, adjacent arcs tend to come from the same 
ellipse. We find arc pairs whose end-point distance is no more than one 
pixel, and merge them together if (1) the endpoints and midpoints of 
them constitute a convex hull and (2) the inlier ratio of them is larger 
than each arc after merging. Local grouping significantly reduces the 
number of arcs participating in the global grouping, hence accelerating 
the detection process. Actually, noise causes many adjacent arcs, and 
most of them can be merged, while other invalid arc pairs are directly 
skipped in the subsequent processing. When two arcs Arci and Arcj are 
not adjacent enough, we try to group them again by four global con-
straints.Arc length constraint. If the length ratio of Arci and Arcj satisfies 

1
/

Thlr < |Arci|
/
|Arcj| < Thlr,

then they are checked by subsequent constraints. Otherwise, the arc pair 
is invalid and ignored. When two arcs with large length difference are 
fitted to an ellipse, the result ellipse will fit the longer arc better, 
whereas the shorter one will have very limited impact on the fitting, as 
shown in Fig. 7. Besides, arc length constraint merely involves a simple 
comparison, and can effectively reduce the subsequent computation. 
Hence, we adopt it to accelerate the detection. 

Distance constraint. Although global constraints aim to group 
distant arcs, two arcs apart largely are also less likely from the same 
ellipse. Arci and Arcj are said satisfying the distance constraint if 

dist
(
Mi,Mj

)

max
{⃒
⃒Arci

⃒
⃒,
⃒
⃒Arcj

⃒
⃒
} < Thd,

where M∗ is the middle point of Arc∗, and dist(Mi,Mj) is the distance 
between two middle points. 

Convex hull constraint. According to the convexity of ellipses, Arci 
and Arcj can be grouped if their endpoints and midpoints form a convex 
hull.Direction constraint. Arc pair 〈Arci,Arcj〉 satisfying the above cri-

terion are called co-elliptic, referred to as Arci→Arcj. It should also note 
that the arcs are connected in order, that is, Arci→Arcj and Arcj→Arci are 
two different situations. Arcs should be connected counter-clockwise, as 
shown in Fig. 8 (a), C is the center of the corresponding ellipse, and θi 

represents the rotation angle from the positive x-axis to the vector CMi
̅̅→. 

For example, M1 can be connected to M2 if M1 is co-linear with C and M2 
after a rotation with the angle no more than 180∘, 

fmod(θ2 − θ1 + 360∘, 360∘)〈180∘, (6)  

where fmod(x, y) stands for the floating point remainder of the division 
operation x/y. In practice, we approximate the rotation angles {θi}

based on the pre-fitted ellipse in the inlier ratio step to speed up 
detection. 

Local and global grouping discovers the relationship between any 

Fig. 7. Fitting an ellipse for two arcs. Left: Arc pair with large difference in 
length, where the short arc plays very limited impact on the fitting; Right: Arc 
pair with the similar length, the fitted ellipse is influenced by them 
simultaneously. 

Fig. 8. (a) Connection of counter-clockwise arcs and computation of rotation angles represented by θi. (b) A path with self-intersection, which can be effectively 
removed by our method. 

{

sgn
(

M1E1
̅̅̅→

× E1S2
̅̅ →

)
> 0, sgn

(
E1S2
̅̅ →

× S2M2
̅̅̅→

)
> 0sgn

(
M2E2
̅̅̅→

× E2S1
̅̅ →

)
> 0, sgn

(
E2S1
̅̅ →

× S1M1
̅̅̅→

)
> 0 (5)   
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two arcs, by which we construct a directed graph to encode the rela-
tionship of all arcs. In the graph, vertices stand for arcs, and directed 
edges represent the connected co-elliptic arc pairs in counter-clockwise 
direction. Because of the above strict pairing constraints, the graph is 
usually sparse, thereby we use the adjacency list to reduce the memory 
usage. 

By depth-first searching the directed graph, we can obtain a path 

Arck1 →Arck2 →⋯→Arckn ,

which represents a group of arcs where any two adjacent arcs are co- 
elliptic. Thanks to the data structure of adjacency list, we can merely 
visit the neighbors of a vertex without traversing the other vertices, 
hence greatly reduces the access time consumption. Note that there may 
exist complex paths with self-intersection as illustrated in Fig. 8 (b). In 
this case, we use the following criteria 

R =
1

360∘

∑n

i=1
Δθi  

to filter out self-intersection paths if R ∕= 1, where Δθi is defined as 

Δθi = fmod(θi+1modn − θi + 360∘, 360∘).

Intuitively, R represents the number of circles around the center when a 
virtual point moves along the path. For valid paths, R is always equal to 
one. Through the searching process, all co-elliptic arc groups are found, 
and then a direct least-squares-based ellipse fitting [41] is applied to 
attain candidate ellipses. 

3.3. Ellipse validation and clustering 

Due to the discrete properties of edge pixels, there may exist false 
ellipses among candidates. To further improve the detection accuracy, 
we execute an ellipse validation and compute the salient score S(e) for 
each candidate ellipse e formed by the arc group G, which is defined as 

S(e) =
1

∑
Arc∈G|Arc|

∑

Arc∈G

∑

p∈Arc
1{dist(p, e)< ε}, (7)  

where p is the edge pixel from the corresponding Arc in the same group. 
A candidate ellipse is validated to be true if S(e) ≥ Thss, otherwise we 
remove it because of the unreliability. Let e = (a, b, xc, yc, θ) be the el-
lipse parameters, where a, b are the semi-axis length, (xc, yc) is the 
elliptic center, and θ is the rotation angle along the horizontal axis. 
Then, we use a weighted clustering scheme based on the Euclidean 
distance to evaluate the distinctiveness of two ellipses ei and ej 

D
(
ei, ej

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑5

λ=1
kλ⋅

(
eiλ − ejλ

)2
√

. (8)  

Ellipses ei and ej are clustered together if D(ei, ej) < 20 (suggested by 
[14]). The weight kλ is equal to one except for the rotation angle θ that is 
defined as 

kθ = min
{

ai − bi

ai + bi
,
aj − bj

aj + bj

}

.

Require: I: Input image, Thss: Salient score threshold
Ensure: {e j}Nj=1: detected ellipses
1: Compute edge map Ie using adaptive Canny operator with Gaussian kernel
2: Collect continuous curve set C from Ie by depth-first-search
3: Initialize arc set A := ∅
4: for each curve ci ∈ C do
5: Use RDP to approximate ci by segments {li = Pi−1Pi|Pi ∈ R2}ni=1
6: Calculate angles between adjacent line segments li and li+1
7: Split ci at sharp corners and inflection points to get arcs {ai}mi=1
8: Remove arcs that are too short or straight
9: Sort the edge points of ai in counter clockwise to get arc set Ai
10: A := A ∪ Ai
11: end for
12: Initialize the directed graph D :=< V, E >, where V = A, E = ∅
13: for each arc pair < ai, aj >∈ A × A do
14: if < ai, aj > satisfies the four grouping constraints then
15: E := E∪ < ai, a j >
16: end if
17: end for
18: Initialize result ellipse set Ells := ∅
19: while exist unvisited vertex u∗ ∈ V do
20: Adopt depth-first-search on u∗ to find simple loops
21: Fit ellipse to the arcs to get candidate Ell∗
22: if inlier ratio of Ell∗ ≥ Tss then
23: Ells := Ells ∪ Ell∗
24: end if
25: end while
26: Cluster the ellipses according to the weighted Euclidean distance
27: Output the detected ellipses {e j}Nj=1

Algorithm 1. Fast and accurate ellipse detection  

Z. Shen et al.                                                                                                                                                                                                                                     



Graphical Models 116 (2021) 101110

7

Note that this weighting scheme effectively eliminates the angle influ-
ence caused by the rotation symmetry of circles. 

We summarize the above steps in Algorithum 1 for easier 
understanding. 

4. Experimental results 

In this section, the performance of the proposed method is compre-
hensively evaluated by a series of experiments including (1) parameter 
discussion, (2) comparison with six representative state-of-the-art 
methods regarding synthetic and real-world images, (3) robustness 
against ellipse variations, and (4) robustness against the intersection 
over union (IoU) variations. All experiments are executed on a desktop 
computer with Intel Core I7-7700K CPU @4.20 GHz and 32 GB RAM. 

4.1. Datasets 

We use five synthetic datasets and eight real-world datasets to verify 
the general capability of the proposed ellipse detector. Fig. 9 illustrates 
several images from these datasets, which have different characteristics 
as described in the following. Our code and all datasets will be available 
at https://github.com/meiyy/EllDet. 

Synthetic datasets. Synthetic ellipses involving occlusion, over-
lapping, noise, concentric, and concurrent are tested. There are 300 
images with occluded ellipses and 300 images with overlapping ones 
[1], with the resolution of 300 × 300. Each image has β ∈ {4,8, 12,16,
20,24} ellipses under the constraint that they must overlap with at least 
one ellipse. The complex occlusion or overlapping, especially with the 
number of ellipses increasing, make the detection tough enough. To test 
the robustness of the ellipse detector, we use the function imnoise(img, 
’salt & pepper’, density) in Matlab with density ranging from 4% to 24% 
at the step 4% to add salt-and-pepper noise in the images with 8 over-
lapping ellipses. Besides, we further test 720 images with concentric 
ellipses and 1,200 images with concurrent ones [37] under the resolu-
tion 600 × 600. These images are challenging enough because of the 
multiple cracked arcs for grouping. 

Real-world datasets. Dataset  Prasad et al. [1] has 400 images 
sampled from 48 categories in Caltech256 dataset [42]. However, there 
are only 198 images available online, and we complement the missing 
part named Dataset Prasad+ according to the file provided by the au-
thors. The varying image size with cluttered background is the major 
challenge. Dataset Random [33] also contains 400 images up to 1,280 ×
960 from MIRFlickr and LabelMe repositories [43,44]. The high 

resolution and noisy interference dramatically degrade the detection 
speed and effectiveness. Dataset Smartphone [33] has 629 images 
collected from a video. The existence of image blur and perspective 
transformation is the main difficulty. Dataset PCB [45] has 100 indus-
trial printed circuit board images. The concentric structure and sub-
stantial white noise adversely impact the detection performance. The 
satellite dataset [37] contains 757 optical images and 440 infrared im-
ages, which are captured by the OEDMS and NextSat spacecraft infrared 
cameras, respectively. The space light, camera noise, and the far small 
ellipses are hard to detect. Furthermore, we provide two new datasets 
named Iris and Tableware containing 100 images, respectively. Dataset 
Iris is used to test the detection capability for small ellipses, which are 
selected from CASIA Iris Database [46], while Tableware aims to 
simulate the robotic manipulation of elliptical objects. All ground truth 
images are labeled by ourselves manually and precisely. 

4.2. Evaluation metrics 

To quantitatively evaluate the performance of the proposed method, 
three well-known metrics from information retrieval are utilized, i.e., 
precision, recall, and F-measure, which are defined as 

Precision =
|TP|

|TP + FP|
, Recall =

|TP|
|TP + FN|

.

F-measure = 2 ×
Precision × Recall
Precision + Recall

.

Here, TP, FP, and FN represent the true positives, false positives, and 
false negatives, respectively. A detected ellipse ed is considered to be a 
true positive if its intersection over union (IoU) regarding the ground truth 
et is no less than γ (γ = 0.95 for synthetic images and 0.8 for real images, 
as suggested in [33]). Otherwise, it is a false positive, and a ground truth 
not rightly recognized is seen as a false negative. Note that F-measure is 
a comprehensive performance metric. IoU is defined as 

IoU(ed, et) =
area(ed) ∩ area(et)

area(ed) ∪ area(et)
,

where area(e∗) denotes the number of pixels inside the ellipse e∗. The 
proposed ellipse detector is compared with six representative state-of- 

Fig. 9. Example images in the test datasets. Column 1-3 show the synthetic ellipses with occlusion, overlapping, and noise, respectively. Column 4 includes syn-
thetically concentric and concurrent ellipses. Column 5-7 are the images from datasets Prasad, Random and Smartphone, PCB and Satellite, respectively. The last 
column contains images from our new datasets named Iris and Tableware. 
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Fig. 10. Investigation of the salient score parameter Thss on five datasets listed on top. A better choice of Thss falls in [0.5,0.7], considering the F-measure and time 
consumption. 

Fig. 11. Ellipse detection results on synthetic datasets. Our method achieves the overall highest F-measure with superior precision.  
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the-art methods including Libuda [30], Prasad1 [1], Fornaciari [33], Jia 
[34], Lu [18], and Meng [37]. The source code of these methods are 
publicly available online, and Prasad and Lu are implemented in Matlab, 
while the others and ours are in C++. 

4.3. Parameter discussion 

Our method mainly involves six parameters, which are discussed in 
the following. (1) The angle threshold Thθ is used to discover sharp 
corners, and larger value will tolerate curves with larger curvature. 
Based on the elliptic curvature, we fix Thθ = 46∘ as it performs well for 
general images. (2) Thr is the aspect ratio of bounding box to remove 
straight segments, and we can speed up the detection process by setting 
relatively small ones. However, more arcs will also be deleted. Extensive 
experiments suggest that Thr = 10 is a better balance between the 
effectiveness and efficiency. (3) Inlier ratio threshold Thir is used to 
attain high-quality arcs. Admittedly, larger threshold will keep better 
arcs, but considering the discrete pixels, we choose Thir = 0.7 for use. (4) 
In the arc grouping step, Thlr is the length ratio tolerance of two arcs. 
Because too short arcs hardly provide rich information, we let Thlr be 
equal to 6 to find similar arc pairs. (5) Thd is used to evaluate the dis-
tance between two arcs, due to the image size limit, big values less likely 
emerge, we set Thd = 10 to incorporate as many arc pairs as possible. 
Since the fine and stable performance of these parameters for hundreds 
of images, we fixing them as intrinsic ones without user tuning. (6) The 
last parameter Thss in the validation step is used to select salient ellipses. 
We open it as an adjustable parameter according to the practical 
requirement. Additionally, to reveal the performance variation 
regarding different Thss, we test five datasets as illustrated in Fig. 10. As 
observed, with Thss increasing, precision first goes up and then decreases 
after Thss > 0.8, while recall starts to reduce when Thss > 0.5 and de-
creases significantly when Thss > 0.7, thereby strict verification will 
lower down the metric recall. In practice, we can slightly relax Thss to let 
more candidate ellipses be true positives. Taking time consumption into 
consideration, we suggest Thss ∈ [0.5,0.7] in practice. 

4.4. Test on synthetic datasets 

We report the detection results of synthetic images including oc-
clusion, overlapping, noise, concentric, and concurrent in Fig. 11. As 
observed, the proposed detector attains the highest F-measure on 
datasets occlusion, concentric and concurrent, as well as the highest 
precision with the value more than 80%, which demonstrates its supe-
rior localization accuracy. Methods Lu and Meng share the similar 
performance and are lower than ours. Besides, Fornaciari has the lowest 
F-measure and precision on these three datasets, whereas Jia is better 
than Fornaciari, indicating the effectiveness of the added projective 
invariant. However, the performance of Jia and Prasad are still unsat-
isfactory and are lower than Libuda. Except the occlusion case, our 
method also achieves the highest recall on concentric and concurrent 
cases. For overlapping ellipses, the proposed detector has the highest F- 
measure when the number of ellipses is less than 20. With more ellipses, 
although the F-measure is lower than Lu, we still achieve the second 
highest one, together with the second highest recall, and Lu embraces 
the best recall. Nevertheless, we remain the highest precision. Note that 
as the number of overlapping ellipses increases, the F-measure and recall 
of Prasad and Jia tend to zero, which indicates that they are subject to 
complex scenes. For noisy test, our method returns acceptable results 
when the noise level is no more than 8%. With the noise level increasing, 
the performance of all methods decreases rapidly, it is because heavy 
noise breaks continuous arcs as small fragments, which adversely in-
fluences the arc grouping process. Therefore, a simple denoising step is 
helpful. Several detection examples and more noisy images are pre-
sented in Fig. 12 and Fig. 13, respectively. 

4.5. Test on real-world datasets 

Besides synthetic test, we further report the test results on eight real- 
world datasets. The F-measure and time consumption are given in 
Table 1 and 2, respectively, where the red and blue colors indicate the 
two best F-measure. From Table 1, we can see that the proposed method 
attains the highest F-measure on five datasets and achieves the best 
detection effectiveness in general. Lu achieves the second best F-mea-
sure, but its detection speed is much slower than ours as shown in 
Table 2. Meng gets the third place along with the fastest speed, which 
benefits from its optimization operation. Jia also has the relatively small 

Fig. 12. Ellipse detection examples on synthetic images with occlusion, overlapping, noise, concentric, and concurrent. Our method detects most of the true positives 
while making less false positives. 

1 The implementation online for Prasad is incomplete. We re-implement the 
validation part based on the Section 4 in the original paper [1], as faithfully as 
possible. 
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execution time, but the F-measure is a little low. Although Libuda has 
the fifth highest F-measure on the whole, it performs well on small el-
lipses, which can be concluded from the dataset Iris. But the time con-
sumption of Libuda is very expensive and is much more than ours. 
Methods Fornaciari and Prasad share the similar F-measure, but Prasad 
takes significantly long time, even 100 times than ours, which suffers 
from the process of complex arc grouping and HT voting. However, the 
F-measure of both Fornaciari and Prasad are far from satisfactory, 
especially for complicated images with occlusion or noise, such as the 

images in datasets Tableware and Satellite. As a whole, the proposed 
method embraces the highest F-measure with fairly well competitive 
running time. Several ellipse detection examples are presented in 
Fig. 16. Note that the execution time of our method suggests that we can 
work on general camera video with 30Hz rate. 

Fig. 13. Ellipse detection examples on noisy images. The proposed method has the most true positives.  

Table 1 
Comparison on the eight real-world datasets of six different methods in terms of F-measure (%). Red and blue colors indicate the best two performance, respectively. 
Our method achieves the overall highest F-measure.  

Method Prasad Prasad+ Random Smartphone PCB Satellite Iris Tableware 

Libuda 30.82 40.86 37.49 40.09 61.22 31.74 64.81 16.65 
Prasad 28.78 21.35 29.1 22.25 56.11 6.81 55.52 33.07 
Fornaciari 28.88 31.34 30.62 19.18 55.89 28.79 57.44 15.74 
Jia 33.42 48.96 50.15 52.21 74.84 22.21 58.57 54.74 
Lu 50.91 65.39 60.02 64.02 80.22 45.03 66.37 54.59 
Meng 43.81 54.67 50.05 56.5 70.79 56.65 66.25 53.06 
Ours 45.58 66.78 61.12 74.89 79.46 47.76 75.36 62.9  
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Table 2 
Time (ms) comparison on the eight real-world datasets of six different methods. The proposed method can be used for camera video processing of 30 fps.  

Method Prasad Prasad+ Random Smartphone PCB Satellite Iris Tableware 

Libuda 12.38 20.36 32.04 52.07 26.94 8.92 14.88 95.11 
Prasad 1870.99 5222.84 5153.76 11743 533.97 1074.05 1451.36 16294.7 
Fornaciari 3.88 10.9 11.73 16.84 5.08 2.77 2.92 74.93 
Jia 3.47 7.18 9.6 12.6 4.87 2.44 2.87 40.02 
Lu 78.67 277.92 334.1 618.25 54.53 17.19 27.77 4607.49 
Meng 3.19 5.25 8.24 11.55 3.33 2.61 3.01 26.35 
Ours 7.94 13.15 16.38 19.16 7.1 4.67 4.89 40.98  

Fig. 14. Robustness test results under different ellipse variations. The horizontal axis indicates the axes ratio of semi-minor axis to semi-major one, ranging from 0.01 
to 1 at the step 0.01. The vertical axes are the semi-major axis length in pixel, angular coverage of ellipse arc, and ellipse orientation, respectively. Our method 
embraces a wide range of successful area indicated by the white region. 

Fig. 15. Robustness test results by varying different IoU values. The proposed method achieves the highest F-measure.  
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4.6. Robustness to ellipse variations 

To further investigate the robustness of our method for ellipse vari-
ations regarding size, orientation, and incompleteness, we generate 
three datasets with image size 512 × 512. The first dataset has 20,000 
images with the semi-major axis length varying from 1 to 200 pixels, 
meanwhile, the axis ratio increases from 0.01 to 1 at the step 0.01. To 
evaluate the robustness against rotation angles, we build the second 
dataset by rotating the ellipse from 1∘ to 180∘ at the step 1∘, fixing the 
semi-major axis equal to 200 pixels and varying the axis ratio from 0.01 
to 1 at the step 0.01, hence there are 18,000 images for test. The last 
dataset involving 36,000 images aims to check the capacity for incom-
plete ellipses, where the angular coverage is from 1∘ to 360∘ at the step 1∘ 

and the axis ratio ranges from 0.01 to 1 at the step 0.01. 
The results of ellipse variations are reported in Fig. 14, where the 

white region indicates the correctly detected ellipses and the black re-
gion means the failure cases. From Fig. 14(a), we conclude that our 
detector has a wide range of successful area and can detect small ellipses 
with the semi-major axis around 25 pixels and axis ratio slightly below 
0.2. Fig. 14(b) shows that our method is able to detect incomplete el-
lipses with angular coverage about 150∘. Furthermore, we can improve 
the robustness to incomplete ellipses by slightly lowering down the 
salient score in the validation step. The black region distributes verti-
cally in Fig. 14(c), indicating that our method is very robust to ellipse 
orientation, which is a basic nature for high-quality ellipse detector. 

4.7. Robustness to IoU variations 

We also test the robustness of different methods against IoU. To this 
end, we vary IoU from 0.5 to 0.95 at the step of 0.05 on three datasets. 
Admittedly, higher IoU brings more stricter constraint of an ellipse being 
regarded as a true positive. The detection results are reported in Fig. 15. 
From which, we can see that our method achieves the highest precision 
on all datasets. Although our recall is slightly lower, we still has the best 
comprehensive metric F-measure, which demonstrates the high quality 
performance of our detector. In contrast, Fornaciari attains the highest 
recall, however, due to the lowest precision, its F-measure is far from 
satisfactory. With the value of IoU increasing, all methods show 
descending trend, whereas our method keeps the F-measure higher than 
60% when IoU <= 0.8. When IoU = 0.95, although the F-measure of 
some methods drop below 10% such as Prasad and Fornaciari on dataset 
Smartphone, we still has the F-measure more than 20%, which indicates 
the robustness of the proposed detector to IoU variations. 

5. Conclusions 

In this paper, we have presented a novel ellipse detection method by 
introducing the convex hull and directed graph, which performs accu-
rately and efficiently for versatile synthetic and real-world images. We 
have made innovative improvements compared with previous ones. 
Smooth arcs are extracted by the identification of sharp corners and 
inflection points based on the immediate computation of inner and cross 
products. According to the ellipse convexity, we use convex hull to judge 
the convexity between arc pairs, since merely four cross products are 

Fig. 16. Sampled ellipse detection results on real-world images. The first column presents the input images from the eight datasets, and detection results of different 
methods are presented in the second to last columns. The proposed method detects the most true positives without false positives. 
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needed, the computation is fast. By incorporating other constraints, a 
local to global arc grouping strategy is established. The relationship 
between arc pairs is encoded in a directed graph, by which all arcs from 
the same ellipse are found to generate candidate ellipses. Moreover, a 
rigorous verification and weighted clustering further enhance the ac-
curacy by rejecting false positives and repetitive ones. 

Extensive experiments on 13 datasets compared with 6 representa-
tive state-of-the-art methods demonstrate the superior performance of 
our method, which also has a good potential for video stream process-
ing. In the future, we plan to apply our detector to more dedicated tasks 
such as camera calibration and robotic grasping. 
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