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Abstract
Low-light image enhancement exhibits an ill-posed
nature, as a given image may have many enhanced
versions, yet recent studies focus on building a de-
terministic mapping from input to an enhanced ver-
sion. In contrast, we propose a lightweight one-
path conditional generative adversarial network
(cGAN) to learn a one-to-many relation from low-
light to normal-light image space, given only sets
of low- and normal-light training images without
any correspondence. By formulating this ill-posed
problem as a modulation code learning task, our
network learns to generate a collection of enhanced
images from a given input conditioned on various
reference images. Therefore our inference model
easily adapts to various user preferences, provided
with a few favorable photos from each user. Our
model achieves competitive visual and quantitative
results on par with fully supervised methods on
both noisy and clean datasets, while being 6 to 10
times lighter than state-of-the-art generative adver-
sarial networks (GANs) approaches.

1 Introduction
Low-light image enhancement is fundamentally an image-to-
image translation problem which aims to map low quality in-
puts to high quality versions. It is a task focusing on improv-
ing visual quality of an underexposed image which suffers
from poor visibility, low contrast and noise. Recent works
typically learn an one-to-one mapping functions from the per-
spective of paired data [Wei et al., 2018], learning unpaired
features [Jiang et al., 2021] and brightness constraints [Guo et
al., 2020]. However, this mapping is not necessarily one-to-
one, as one may want to generate from one input image mul-
tiple enhanced versions with different characteristics (light-
ing, tone, details etc), and meanwhile one high quality image
can correspond to many low quality versions. This ill-posed
nature indicates the unsuitability of paired supervision with
one-to-one mapping assumption in image enhancement tasks,
which exactly motivates our work. In this work, we define the
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Figure 1: One-to-many Image Enhancement. We show an input low-
light image at the bottom left and a set of normal-light reference im-
ages with different style on the first row. We then show our stylized
results with enhanced light condition.

task as improving the color, brightness and contrast of the in-
put image conditioned on a given reference image. The use
of conditioning enables one-to-many learning.

In this paper, we focus on learning an one-to-many map-
ping model without paired training samples. Concretely, as il-
lustrated in Figure 1, we are able to translate a given low-light
image to a normal-light one conditioned on the reference im-
age (e.g., user preference on the image brightness, contrast,
etc.). The conditional enhancement procedure is conducted
by a U-Net Translator and a Modulation Code Generator
(MCG). Specifically, the MCG generates a modulation code
that fuses the characteristics of the learned features of both
the low-light input image and the reference image. Mean-
while, the U-Net Translator performs conditional translation
on the input low-light image with the assistance of our pro-
posed Pixel-wise Self-Modulation (PSM) and Channel-wise
Conditional-Modulation (CCM). The PSM module learns to
adjust the mean and variance of the feature of input low-light
image on each spatial location, while CCM is complemen-
tary to this operation. It performs channel-wise modulation
conditioned on the modulation code generated by the MCG.

To enable unpaired learning, we optimize the model with
four objective functions: 1) the idempotence loss that as-
sumes a normal-light image should be mapped to itself when
conditioned on itself. 2) the spatial consistency loss that fa-
cilitates the generated image to have more spatial coherence
with the input. 3) the global color consistency loss that makes
the overall color coherent with the input. 4) the GAN loss that
tries to make the outputs more realistic.
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Figure 2: Our method outperforms the state-of-the-art baselines both qualitatively and quantitatively.

2 Related Works
We review related works in two main categories: image en-
hancement and conditional image generation. We mainly dis-
cuss the literature that addresses the problem of low-light im-
age enhancement in unpaired and unsupervised setting, which
is closely related to our setting.

2.1 Image Enhancement
Traditional Methods. There are two main categories
of methods for low-light image enhancement, Histogram
Equalization (HE) based methods [Pizer et al., 1987] and
Retinex [Land, 1977]. For example, LIME [Guo et al., 2018]
searches the maximum value in the RGB channels of the im-
age to estimate the illumination of each pixel then rebuilt the
illumination map with a structure prior. However, these meth-
ods have poor generalization ability, and often result in visible
noise for real low-light images.

Learning-based Methods with Paired Supervision. Re-
cently, the methods based on deep neural network achieve im-
pressive results on low-light image enhancement. In enhanc-
ing natural images, there are many promising methods [Lore
et al., 2017; Wei et al., 2018]. And for relight HDR images,
HDR-Net [Gharbi et al., 2017] utilized bilateral grid process-
ing and local affine color transforms. Aiming at enhance raw
sensor data, [Chen et al., 2018a] proposed a “learning to see
in the dark” methods that achieves impressive visual results.

Learning-based Methods with Unpaired Supervision. In
image translation, there are many excellent works [Zhu et
al., 2017; Wang et al., 2018] based on unpaired data. Fo-
cusing on image enhancement, several methods are proposed
due to the difficulty of obtaining paired data in real scenes.
[Yang et al., 2020] train a deep recursive band network with
paired-unpaired images. [Jiang et al., 2021] propose Enlight-
enGAN that can be trained without low/normal-light image
pairs. Zero-DCE [Guo et al., 2020] estimates the pixel-wise
and the high-order curves for dynamic range adjustment of
a low-light image in an unsupervised way. These methods
are one-to-one mapping of low light images to target domain.
However, image enhancement is ill-posed and cannot be in-
verted with a deterministic mapping. While different from
aforementioned works that map low-light images to a single
enhanced distribution, we develop a lightweight conditional
GAN, that learns a one-to-many relation from low-light to
normal-light image space without paired datasets.

2.2 Conditional Image Generation
The generative adversarial networks [Goodfellow et al.,
2014] (GANs) employ a discriminator to distinguish the gen-
erated images from the real ones. Prior works have con-
ditioned GANs (i.e., cGANs) on discrete labels [Mirza and
Osindero, 2014], text [Reed et al., 2016] or images [Isola et
al., 2017].

Among them, the most related direction to ours is translat-
ing an image from one domain to another, conditioned on
a given reference image. Along this line, previous works
in image style transfer introduce Conditional Instance Nor-
malization (Conditional IN) and Adaptive Instance Normal-
ization (AdaIN) to adjust the mean and the variance of the
content input by style-specific parameters [Dumoulin et al.,
2017] or alternatively by directly replacing the mean and
the variance with those of the style input [Huang and Be-
longie, 2017]. Basically, these normalization-based methods
first normalize the features to a normal distribution, then de-
normalize them with a learned affine transformation whose
parameters inferred from external data. Due to their flexi-
bility, both were successfully adopted in various tasks with
paired supervision [Brock et al., 2018; Park et al., 2019;
Zhang et al., 2020].

Most of conditional image generation works are trained
with paired data, e.g., segmentation masks and images. While
in this paper, we focus on unpaired conditional image gener-
ation, and achieve it with several proposed schemes that are
elaborately tailored for image enhancement (see Fig. 2 for a
qualitative comparison between our method and above men-
tioned baselines.).

3 Methodology
Problem Formulation. We aim at transferring a given low-
light image to its normal-light counterpart according to user’s
preference without paired training samples. Formally, let x be
an input image in the image space X . We want to construct
a conditional mapping G(x |yref) : x ∈ X → y ∈ Y which
maps x to an image y in the target image space Y of normal-
light images, conditioned on the reference image yref. To this
end, we propose to transfer the style information contained in
yref through the form of a modulation code cref (see Fig. 4).

Approach Overview. To enhance the input low-light im-
age to a normal-light one conditioned on a reference im-
age, we employ a U-Net Translator that performs conditional
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Figure 3: Overview of our Condition GAN for image enhancement.
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Figure 4: Modulation Code Generator

translation on the input low-light image. Our U-Net Transla-
tor consists of two complementary modules: the Pixel-wise
Self-Modulation (PSM) and the Channel-wise Conditional-
Modulation (CCM), where both of them are designed to ad-
just the feature distribution of the low-light input image but
from different aspects. Specifically, the PSM is designed to
learn modulation parameters from previously upsampled fea-
tures, while the CCM is designed to learn from the features
of both the low-light and the reference image. In particular,
the features fed into CCM are generated by our Condition Net
(CondNet), which consists of three convolutional layers. To
make the enhanced image natural, we also equip the model
with a discriminator that distinguishes the feature outputted
by CondNet from low- and normal-light domain. By enabling
weight sharing, CondNet is encouraged to learn the difference
, between the two image space, seen by both the generator
and the discriminator. It prevents discriminator from cheating
with discriminating based on other feature that is unrelated to
the generator side.

3.1 Modulation Code Generator
A typical conditional image generation approach generates
modulation parameters (e.g., learned scale and bias for
AdaIN [Dumoulin et al., 2017]) purely based on conditional
input, which is the reference image yref in our setting [Park et
al., 2019; Zhang et al., 2020]. However, for our unpaired im-
age enhancement, there are several issues of generating mod-
ulation parameters from the reference image only: 1) Our
goal is to enhance input image itself according to the refer-
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Figure 5: Pixel-wise Self-Modulation (PSM) block

ence image, which not only fully depends on the reference
image but also needs to consider the property of the input im-
age. 2) Since we do not have paired training samples, it is im-
possible to optimize the model with pair-wise constraint like
Mean Square Error. Generating modulation code only condi-
tioned on the reference may allow the network to take short-
cuts and cheat on the loss function where low cost is achieved
while no valid characteristic is extracted from the reference
image. More specifically, the network would learn a constant
bias while only take the reference image as input. Therefore,
we combine the information from both the input image and
the reference one to facilitate the learning process of Modu-
lation Code Generator. Formally, we perform global average
pooling on the outputs of CondNet, forming two feature vec-
tors xc and yc

ref for the input image x and the reference image
yref respectively. Our Modulation Code Generator can be for-
mulated as:

cref =fcout(fcin(c′ref)� yc
ref ⊕ fcy(c′ref)),

where c′ref =concat(xc,yc
ref),

(1)

concat and fc indicate concatenation operation and fully-
connected layer respectively, � and ⊕ denote element-wise
multiplication and addition respectively.

3.2 U-Net Translator
Our U-Net Translator follows a typical encoder-decoder ar-
chitecture with skip connections [Ronneberger et al., 2015],
which has strong capability on multi-scale texture preserva-
tion [Jiang et al., 2021]. We tailor the standard U-Net archi-
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Figure 6: Channel-wise Conditional-Modulation (CCM) block

tecture for our task from three aspects: 1) we propose a Pixel-
wise Self-Modulation (see Fig. 5) to match the statistics of the
upsampled feature with the skipped feature. 2) we propose a
Channel-wise Conditional-Modulation (see Fig. 6) to polish
the feature with the generated modulation code (see Fig. 4),
which is vital for conditional image enhancement. 3) we re-
move the original batch normalization layers which destroy
the relative distribution across channels, as our Channel-wise
Conditional-Modulation is learned more efficiently by see-
ing the original distributions. We elaborate the two proposed
modules as follows.

Pixel-wise Self-Modulation (PSM). Commonly, the de-
coder of the U-Net combines the preceding feature generated
from the encoder with the upsampled feature by concatena-
tion or summation. However, in an enhancement setting, the
feature generated from the encoder side generally represents
the input in the low-light domain. While for the decoder side,
we gradually generate normal-light representation for the in-
put. Simply mixing them together without additional adjust-
ment will lead to a domain gap between the encoder and
decoder representation. Therefore, instead of a direct con-
catenation, we propose a Self-modulation Block to adjust the
statistics of skipped feature by the upsampled feature from
the previous layer. As illustrated in Figure 5, the skipped fea-
ture is first processed by an instance normalization layer and
two 3× 3 convolution layers with leaky ReLU, then fed into
AdaIN [Huang and Belongie, 2017], whose mean and vari-
ance are calculated from the upsampled feature. The goal of
our PSM block is to enhance the skipped feature, which con-
sists of multi-scale texture information, in an adaptive way.
Intuitively, it can be viewed as modulating the lower-level
representation using the higher-level one. Thus, the PSM
block is expected to automatically learn to enhance the image
while preserving the detailed content. Note that, our PSM
block is totally different from [Chen et al., 2018b], where the
feature is modulated by some input noise. In contrast, our
modulation condition is provided by previous layer, targeting
at matching the statistics between the skipped feature and the
upsampled one.

Channel-wise Conditional-Modulation (CCM). Our
CCM block plays two important roles: 1) it transfers the
style of the reference image, which encoded in a modulation
code, to the input low-light image. 2) it performs learnable

Input Ours w/o Lspa w/o Lcolor GFM

Figure 7: Ablation study on losses and the CCM block. On column
3-4, we verify the usefulness of our loss functions on two challenge
cases of low-light images. In the last column, we show the results of
replacing our CCM block with Global Feature Modulation (GFM)
followed by ReLU, which justifies the effectiveness of our CCM
block.

non-linear transformation on the learned feature. Formally,
let cref be the modulation code inferred from yref, as shown
in Figure 6, our CCM block first generates four coefficient
vectors α1

ref, α
2
ref, ᾱref, and βref based on the modulation code

cref through two fully-connected layers. Then the retouch
operation m(·) can therefore be formulated as:

m(x) =

{
α1

ref � (x	 ᾱref)⊕ βref if x > ᾱref

α2
ref � (x	 ᾱref)⊕ βref if x ≤ ᾱref,

(2)

where�,	 and⊕ indicate element-wise multiplication, sub-
traction and addition respectively. A typical contrast and
brightness adjustment operation in image processing can be
formulated as Inew = αI+(1−α)β+ b, where α is a scaling
factor, β is the average intensity value, and b is the brightness
adjustment coefficient. which can be simplified as αI + γ.
However, this linear operation has limited effect as com-
pared to the more sophisticated curve adjustment. In previ-
ous work, non-linearity is achieved by introducing activation
functions like ReLU into the main path [Jiang et al., 2021;
He et al., 2020], or by using curve adjustment directly [Guo
et al., 2020]. We propose to simulate curve adjustment by
compositing the function defined in (2) for multiple times.

3.3 Objective Functions
As we have encoded the brightness and the contrast in-
formation into the Condition Net, and further encoded the
reference-controlled channel-wise modulation information
into the modulation code, our U-Net translator only needs to
carry forward content information, and is therefore suitable
to take as input images from both low-light and normal-light
image space. Our training involves feeding images from both
space to the translator. We propose to use two non-reference
pixel-wise losses, i.e. an idempotence loss and a spatial con-
sistency loss, within the target image space, together with a
global color consistency loss and a GAN loss to enable un-
paired learning in U-Net Translator.

Idempotence Loss. The idempotence loss requires that a
normal-light image should be mapped to itself when condi-
tioned on itself. Let y be an image sampled from the normal
light space, the loss is defined as

Lidem =
∥∥G(y |y)− y

∥∥
1

(3)



Spatial Consistency Loss. We adopt the spatial consis-
tency loss [Guo et al., 2020] between the generated reference,
which encourages spatial coherence between two images in
the form of consistent gradient variation in the local neigh-
borhood. Let y1,y2 be two images sampled from the normal
light space, the loss is given as

Lspa =
∥∥∇G(y1 |y2

)
−∇y1

∥∥
1

(4)

Global Color Consistency Loss. The relative strength of
each color channel of the enhanced output should not deviate
significantly from the input. To this end, We propose a global
color consistency loss which prevents unrealistic color tone
shift. Let Ic(·) denote the average intensity value of channel
c of an layer-normalized image, we define the loss as

Lcolor =
∑

c∈{R,G,B}

(
Ic
(
G(x |yref)

)
− Ic

(
x
))2

(5)

GAN Loss. We slightly modify the standard GAN loss by
letting the discriminator see two types of fake images, one
generated from an low-light input x and the other generated
from a normal-light input y, both conditioned on a reference
normal-light image yref. Overall, the loss is written as

LGAN = Ey∼Y
[

log
(
D(y)

)]
+

λEx

[
log
(
1−D

(
G(x |yref)

))]
+

(1− λ)Ey,yref∼Y
[

log
(
1−D

(
G(y |yref)

))] (6)

Overall, our final loss function is a combination of each
individual constraint:

Ltotal = Lidem + Lspa + Lcolor + αLGAN. (7)

4 Experiments
4.1 Dataset and Implementation Details
One of the main advantages of our unpaired setting for im-
age enhancement is that we utilize a much larger collec-
tion of low-light and normal-light images without imposing
given correspondences between the images, which is not the
case for the methods designed on paired and fully super-
vised setting. Thereby, we assemble images from three dif-
ferent datasets [Wei et al., 2018; Bychkovsky et al., 2011;
Loh and Chan, 2019] and ignore the paired information in
each individual dataset if there is any, which leads to a larger
and more diverse dataset that consists of 983 low-light and
5576 normal-light images. We follow the same practice of
previous work[Yang et al., 2020] to use part of the LOL
dataset[Wei et al., 2018] for training, and leaving the other
part for testing. We then train our network on this unpaired
dataset and compare to other methods with their pretrained
models.

We implement our network with PyTorch on a Tesla GPU.
Our network has 891, 527 parameters in total including the
discriminator, leading to almost 10 times reduction in size
as compared to EnlightenGAN [Jiang et al., 2021] with
8, 636, 675 parameters. The weights of each layer are ini-
tialized with random values sampled from a Gaussian with

0 mean and 1 standard deviation. We adopt Adam opti-
mizer with default parameters and with learning rate set to
5 × 10−5. We set the loss weight λ in Eq. (6) to 0.9, and α
in Eq. (7) to 0.05 in all the tests. Our code can be found at
https://github.com/sxpro/ImageEnhance cGAN.

4.2 Ablation Study
We demonstrate the effectiveness of our choice of losses and
the CCM block via ablation studies. We do not ablate the
idempotent loss Lidem as it is the only loss that enforces con-
tent consistency in our setting, meaning that the generator
would produce almost arbitrary results in absence of Lidem.

Contrast adjustment module. Our Channel-wise
Conditional-Modulation (CCM) is designed to transfer
the style of the reference image which can particularly
capture the contrast and the brightness of the reference
image. An alternative design choice would be adopting
GFM followed by leaky ReLU as used in [He et al., 2020].
However, this can result in non-realistic color tones as shown
in the last column in Fig. 7. On the contrary, our proposed
CCM component can properly capture the style feature of
the reference image and smoothly transfer it to the output.

Spatial Consistency loss. The spatial consistency loss
Eq. (4) can help the network to better learn and infer the
normal-light image space explicitly where the spatial coher-
ence between to normal-light images are promoted via this
loss. We can observe the contribution of this loss in the third
column of Fig. 7.

Color Consistency loss. The color consistency loss Eq. (5)
ensures that the color distribution of the output image does
not deviate too much from the input image though the light
condition get enhanced significantly. Removing this loss can
lead to results with undesirable color distribution (see the
fourth column in Fig. 7 for an example).

4.3 Benchmark Evaluations
We compare our conditional GAN with several state-of-the-
art methods, including SIRE [Fu et al., 2016], LIME [Guo
et al., 2018], NPE [Wang et al., 2013], RetinexNet [Wei et
al., 2018], DRBN [Yang et al., 2020], CSRNet [He et al.,
2020], EnlightenGAN [Jiang et al., 2021], Zero-DCE [Guo
et al., 2020], CycleGAN [Zhu et al., 2017], TSIT [Jiang et
al., 2020], and MIRNet [Zamir et al., 2020].

Specifically, Table 1 shows a quantitative comparison be-
tween our method and the other baselines on the PSNR, SSIM
and the NIQE [Mittal et al., 2012] metrics. Note that, even
in a more challenging setup without paired information and
conditional constraint, our method achieves the state-of-the-
art performance on FiveK among unpaired methods. Fig. 8
shows a qualitative comparison. In LOL-#690, we can see
our results have brightness and contrast with less noise, and
we have enhanced the color and contrast of the trees and the
building in LIME-#2.

5 Conclusion
In this paper, we propose a conditional GAN with tai-
lored components including PSM and CCM for image en-

https://github.com/sxpro/ImageEnhance_cGAN


Method \Metric Unpaired Conditional LOL-690 FiveK
SRIE 15.35 \ 0.559 \ 7.4022 16.90 \ 0.750 \ 4.1352
LIME 17.97 \ 0.512 \ 8.2972 16.67 \ 0.772 \ 3.7043
NPE 17.62 \ 0.481 \ 8.5105 15.60 \ 0.736 \ 3.6475
RetinexNet 16.17 \ 0.420 \ 9.2652 11.89 \ 0.644 \ 4.4298
DRBN 18.71 \ 0.784 \ 4.5612 15.07 \ 0.562 \ 7.1623
CSRNet 15.69 \ 0.408 \ 8.1343 23.68 \ 0.896 \ 3.7492
EnlightenGAN 3 18.89 \ 0.692 \ 5.0857 15.47 \ 0.734 \ 3.7616
Zero-DCE 3 18.47 \ 0.598 \ 7.8224 13.01 \ 0.557 \ 7.3117
CycleGAN 3 17.42 \ 0.576 \ 4.0663 17.04 \ 0.681 \ 4.8327
TSIT 3 13.14 \ 0.533 \ 5.5965 14.35 \ 0.638 \ 5.3926
MIRNet 3 12.90 \ 0.432 \ 4.2501 19.36 \ 0.806 \ 3.9225

Min. 12.24 \ 0.609 \− 11.97 \ 0.655 \−
Ours Avg.

3 3
17.00 \ 0.671 \− 17.37 \ 0.750 \−

Max. 22.45 \ 0.732 \ 4.0733 20.87 \ 0.797 \ 4.0305

Table 1: PSNR(↑) \ SSIM(↑) \ NIQE(↓) metrics on the paired test set of datasets LOL [Wei et al., 2018] starting from image #690, and
FiveK [Bychkovsky et al., 2011]. The arrow after each metric indicates whether a larger or a smaller value is better. As our method generates
a distribution of output images given a set of reference images, we report the minimum, average and maximum values of PSNR and SSIM.
As NIQE is a no ground-truth quality metric, we can thus select the reference which gives the best NIQE, from the reference set.

Input Ours EnlightenGAN Zero-DCE CSRNet RetinexNet DRBN LIME NPE SRIE CycleGAN MIRNet TSIT

LOL-#690 4.2425 4.8526 8.3080 9.0266 8.7709 4.7624 9.2178 9.1257 8.0100 3.6575 4.9947 5.7891

LOL-#752 4.3532 5.4467 8.8986 9.5027 10.216 4.7690 9.3326 9.3576 7.3177 4.9174 3.9684 4.6315

LIME-#2 3.1695 2.0699 2.1353 2.4681 3.0647 2.1000 2.3746 2.1736 2.1085 3.4175 2.0576 5.3264

Figure 8: Qualitative comparison. We compare out method with the state-of-the-art baselines. The top two rows show results on the images
from the test set, while the last row (and also Fig. 2) show results on the LIME dataset [Guo et al., 2018]. We can see that our method has
better generalization ability. Below each image, we also report the NIQE metric for each image. Best viewed by zooming in the electronic
version.

hancement in an unpaired setting. We also propose task-
specific losses including an idempotence loss, a spatial
consistency loss, a global color consistency loss, which
are combined with the standard GAN loss to encode the
reference-controlled channel-wise modulation information
and the brightness/contrast information of the input image
and the reference image. Our design addresses the one-to-
many mapping nature of the problem of image enhancement
and achieves state-of-the-art performance on several standard
datasets in a much lighter design with 10× less parameters
as compared to the state-of-the-art [Jiang et al., 2021]. We
have justified the usefulness of our designed losses in im-
age enhancement and we believe they can be applied to other
image processing tasks such as style transfer or image syn-
thesis due to the fact that our losses encode the general and
global information of input images. Therefore, in the future
work, we would like to investigate the generalization ability
and effectiveness of our designed losses and investigate the
performance of our PSM/CCM components in other network
architecture.
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