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ABSTRACT
Existing deep-learning tools for road network generation have
limited applications in flat urban areas due to their overreliance
on the geometric and spatial configurations of street networks
and inadequate considerations of topographic information. This
paper proposes a new method of street network generation
based on a generative adversarial network by designing a pre-
positioned geo-extractor module and a geo-merging bypath. The
two improvements employ the complementary use of geometric
configurations and topographic features to automate street net-
work generation in both flat and hilly urban areas. Our experi-
ments demonstrate that the improved model yields a more
realistic prediction of street configurations than conventional
image inpainting techniques. The model’s effectiveness is further
enhanced when generating streets in hilly areas. Furthermore, the
geo-extractor module provides insights from the computer vision
perspective in recognizing when topographic information should
be considered and which topographic information should receive
more attention.

ARTICLE HISTORY
Received 11 August 2021
Accepted 28 April 2022

KEYWORDS
Street network generation;
topographic information;
computer vision; generative
adversarial network;
planning support systems

1. Introduction

The emerging deep learning-driven tools open a new window for geographers and
planners to understand the urban fabric and provide an evidence base for road net-
work design (Law et al. 2020, Shi et al. 2021). Despite a series of attempts to automate
the process of street network generation (Hartmann et al. 2017, Kelvin and Anand
2020, Fang et al. 2021), the applications of existing deep learning-based approaches
are limited in flat urban areas, and produce unreliable results in hilly regions (Fang
et al. 2020b). The main reason lies in overreliance on the geometric and spatial config-
urations of streets and roads and has limited or zero consideration of topographic
information in the automated generation process.
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This paper aims to fill the gap by proposing a topography-aware approach to
the automatic generation of urban road networks. Building on the proven track
record of generative adversarial network (GAN)-based methods of street network
generation, this research presents an extended GAN-based model with a pre-posi-
tioned geo-extractor (GE) module and a geo-merging (GM) bypath, making comple-
mentary use of both the geometric configurations and topographic features of
street networks to automate street network generation in both flat and hilly
urban areas.

Note that street network generation in this study specifically refers to the prediction
of missing segments in a street configuration within a pre-defined region. The gener-
ation capability is trained through mining the correlation between local conditions (i.e.
topographic features and surrounding street network) and a spatial layout of streets
based on real-world cases. Although the developed model acknowledges the existence
of unexpected characteristics of the actual street network, it will focus on identifying
the dominant influencing attributes and their relative importance. Therefore, the
model is not designed to accurately reproduce all the road segments (as some of
them are arbitrarily designed), though its overall performance is meaningful in reflect-
ing how well the street configuration, in general, can be reproduced based on the
given local conditions.

Four Italian cities (Florence, Perugia, Rome and Siena) were selected as case study
areas to evaluate the performance of the proposed model. With a rich mixture of hilly
and flat urban areas, Italy is a suitable place for exploring the roles of natural geog-
raphy and human interventions in street network design. Specifically, we first develop
a street network dataset, which includes approximately 56,000 street network samples
extracted from the case study areas. For each sample, the two-dimensional rasterized
street network data are enhanced with seven types of topographic information, includ-
ing topographic elevation, slope, aspect of slope, and a set of hill shade data derived
from four different azimuths of light (0, 90,180 and 270 degrees).

We then propose a three-stage GAN-based model of street network generation,
including (1) a pre-positioned GE module for topographic information selection and
weighting (stage 1) in line with the generation tasks in various topographic conditions,
and (2) GM bypaths for vertices prediction and coarse street network generation
(stage 2) and street network refinement (stage 3). The model design builds on the lat-
est work by Fang et al. (2021), who first employed a GAN-based image inpainting
technique for road network generation, and Yu et al. (2019), who developed a multi-
stage generation framework for better model performance in image inpainting.

Specifically, we extend the standard encoder-decoder system from a state-of-the-art
model for image inpainting (Yu et al. 2019) to consider additional features (i.e. local
topographic information) beyond the surrounding geometric and spatial configura-
tions alone. The improvement is achieved by attaching GM bypaths that learn the cor-
relations between as-built street networks and local topographic features.
Furthermore, the proposed three-stage model structure enables (1) the selection and
weighting of topographic information, and (2) the use of vertices as intermediate
guidance. The upgrade can address failure cases when the existing one-stage street
generation models are applied to hilly areas (Fang et al. 2020b).
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This research offers the following contributions. First, this study extends the capabil-
ity of GAN-based street network generation methods to become aware of both the
surrounding context and the local typography. The experiment’s results demonstrate
that the improved generation model can yield a more realistic prediction of street
configuration whose effectiveness is further enhanced in hilly areas. Second, the
weight variances of different typographic data are identified by the model, leading to
context-specific planning and design implications for practitioners. Third, although the
model itself is not developed for designing creative spatial proposals, it can learn from
precedents such as organically developed road networks. Moreover, the model can fol-
low planning guidance such as the junction locations to produce a series of alternative
plans for comparative evaluations in practice.

The remainder of this paper is organized as follows. An overview of related work is
offered in Section 2. Our urban street dataset and a brief description of the topo-
graphic data are introduced in Section 3. The proposed topography-informed model
of urban street network generation is presented in Section 4, followed by details of
experiments, results, and discussions in Sections 5 and 6. Section 7 concludes
the paper.

2. Related and previous research

The development of digital assistance tools remains topical in planning fields where a
series of alternative plans can be generated for comparative evaluations, leading to
the delivery of optimal design and engineering solutions within a narrow time window
(Coons 1964, Yang et al. 2019, Yang 2020 ). With the advances in information technol-
ogy, procedural and learning-based digital assistance tools have been widely adopted
in support of street network generation and visualization.

Procedural-based tools are used in design proposals based on manually designed
rule sets. For example, Parish and M€uller (2001) adopted a Lindenmayer system for
expanding road networks with four different rule sets for automatic road network gen-
eration, namely, the basic rule, New York rule, Paris rule, and San Francisco rule. Users
choose and apply the desired rule set by jointly considering topographic constraints
and site context. The other prevalent rule sets in street network generation include
the anisotropic shortest-path rule (Galin et al. 2010) and the direction field from virtual
traffic simulation (Chen et al. 2008, Bene�s et al. 2014). The rule sets used for street net-
work generation can also be derived from statistics. For instance, Aliaga et al. (2008)
employed preprocessed statistics regarding existing intersections (e.g. degrees and
hierarchies) as rules for street generation that link the proposed road junctions.

In comparison, learning-based approaches draw lessons from real-world street net-
work cases. Hartmann et al. (2017) made one of the first attempts to develop an auto-
matic road generation tool, StreetGAN. The tool used a GAN system to synthesize
street networks, maintaining the consistency of street networks’ geometric and spatial
configurations learned from the training data set. In addition, Kempinska and Murcio
(2019) and Law and Neira (2019) trained variational autoencoders and convolutional-
PCA using rasterized street network patches derived from OpenStreetMap (OSM), and
attempted using low-dimensional vectors to control the street network generation.
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Inspired by the image completion task in computer vision, Fang et al. (2020b)
adapted one of the state-of-the-art GAN-based image inpainting models (Iizuka et al.
2017). The authors proposed a context-aware street generation module, DeepStreet,
that can predict the future expansion patterns of street networks within the pre-
defined region conditioned by surrounding street networks. Recently, Fang et al.
(2021) incorporated planning guidance into the GAN-based generation process, includ-
ing street junction locations and street-pattern-type annotations. This development
turns the end-to-end generation system into a controllable process (Fang et al. 2021).
The result leads to a more realistic prediction of street configurations and provides
both professional and lay users with the opportunity to intuitively explore alternative
street network designs for comparison and further evaluation. The conventional struc-
ture of GAN-based street network generation models is shown in Figure 1.

Despite increasing efforts to iteratively develop digital assistance tools for automatic
street network generation, current tools fall short of emphasizing the role of topo-
graphic information in the generation process. A few procedural-based methods have
offered topographically aware generation rules, such as the San Francisco rule in
Parish and M€uller (2001) and the anisotropic shortest path rule in Galin et al. (2010).
However, the rules are general and must be uniformly adopted to the pre-defined
area. Moreover, once the topographically aware generation rules are adopted, the geo-
metric and spatial configurations of the street network in the context region cannot
be considered simultaneously in the generation process. This limitation complicates
the production of high-quality street network designs in the hilly-to-flat transi-
tion area.

Regarding learning-based approaches, GAN-based models limit their applications to
flat-terrain urban areas, with failure cases occurring when the models are applied to

Figure 1. Conventional structure of GAN-based street network generation models.
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hilly urban fringes (Fang et al. 2020b). The main reason lies in an overreliance on the
geometric and spatial configurations of streets in the model training and inference
process combined with limited or nonexistent consideration of topographic informa-
tion. Most studies do not input any topographic information into the GAN-based sys-
tem during the model training stage. As a result, the models are unable to establish
links between topographic features and as-built street networks (Hartmann et al. 2017,
Kempinska and Murcio 2019, Law and Neira 2019).

Among the limited attempts to consider topographic constraints, Fang et al.
(2020b) incorporated topographic information into the generation process. Two add-
itional channels, topographic elevation and aspect of slope, were attached to the train-
ing and testing data sample. However, failure cases demonstrated that the models
could not effectively extract topographic features and were not equipped with the
capability of using appropriate topographic information to guide street network gen-
eration in hilly areas. Data on topographic elevation and slope aspect alone are insuffi-
cient to guide street network generation; thus, other types of topographic information
must be reviewed and incorporated.

This research aims to build on the proven track records of learning-based street
network generation systems, proposing a topography-informed model to address the
limitations and challenges identified in the literature. First, we include seven types of
topographic information in the system and propose a GE module for the selection
and weighting of this information. This procedure allows our model to recognize vari-
ous types of topographic information and learn a soft-gate mechanism with values
ranging from 0 to 1. The mechanism amplifies appropriate topographic information in
hilly regions where such data are essential to guide street network generation. In add-
ition, the GE module restrains topographic data in flat urban regions where street net-
work patterns in context regions are essential for inspiring street network generation.

Furthermore, we improve a GAN-based model that takes preprocessed topographic
data, street networks in the context region, and desired junction locations as inputs. A
completed street network is then output. The existing end-to-end generation system
is modified to a three-stage mechanism that first learns to predict the vertices of the
street network based on preprocessed topographic information. The street network
within the predefined region is then completed, using the predicted vertices as inter-
mediate guidance.

Meanwhile, at the generation stages, we also upgrade the standard encoder-
decoder system that is widely adopted in existing image inpainting models (Yu et al.
2018, 2019). This upgrade is accomplished by attaching an additional GM bypath to
learn the correlations between as-built street networks and local topographic features.
The improvement enables the model to jointly consider the geometric and spatial
configurations of a non-local street network (through existing encoder and decoder
paths designed for image inpainting), and local topographic features (through the
additional GM bypath) during the generation process. With the above updates, our
model can adaptively generate appropriate street networks within the predefined
region. The generated street network can reasonably fit to the surrounding street net-
work by jointly considering site context, planning guidance, and topographic
constraints.
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3. Urban road network dataset with enhanced topographic information

Two stages occur when preparing an urban road network dataset (Figure 2), namely,
(1) base map preparation with enhanced topographic information and (2) sample col-
lection. To evaluate the performance of the proposed model, we created an urban
street network dataset enhanced with topographic information for four cities in central
Italy: Florence, Perugia, Rome, and Siena. These four cities are located in the
Apennines – a series of mountain ranges bordered by narrow, flat coastland, forming
the backbone of peninsular Italy. Rome and Florence were selected as the examples of
human-centric development in the flat part of central Italy, while Perugia and Siena
were selected to represent such development under tight topographic constraints.

3.1. Base map preparation

In the first stage, we prepared base maps for the four cities in central Italy by creating
multiple overlapping layers, or ‘channels,’ of an image to represent the comprehensive
attributes associated with the road network design. These channels were divided into
two specific types: topographic information and street-network-related data.

3.1.1. Topographic information (channels 1–7)
Topography is identified as one of the dominant factors influencing street network
orientation, configuration, and entropy (Boeing 2019). We collected publicly accessible
digital elevation model (DEM) data as a basis to derive topographic information chan-
nels. A comprehensive list of variables widely acknowledged in terrain analysis have

Figure 2. Overall process to set up the urban road network dataset enhanced with topographic
information.
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been adopted in this study (Olaya 2009), including topographic elevation (Channel 1),
slope (Channel 2), aspect of slope (Channel 3), and four shade maps of hills (Channels
4–7). The resolution of the raw DEM data is 30 by 30m. Based on spatial interpolation
and aggregation, we prepared the DEM data at three different spatial resolutions to
simultaneously train the model (see Section 4.2): (1) 2 by 2m (a 256 by 256 pixel [pix]
sample represents a 512 by 512m area); (2) 8 by 8m (a 64 by 64 pix sample repre-
sents a 512 by 512m area); and (3) 32 by 32m (a 16 by 16 pix sample represents a
512 by 512m area).

3.1.2. Street-network-related data (channels 8–10)
An open-source vector representation of street networks, with street level attributes
provided by OSM, was used to retrieve street-network-related information. Street net-
works (including motorway, trunk, primary, secondary, tertiary, and residential follow-
ing the OSM definitions) were rasterized to form a road network map (Channel 8). The
width of streets was consistently set as 10 pix (representing 10m) to guarantee that
all road segments could be fully represented when the images are compressed in the
training stage. In addition, all the junction points (with the degree of connectivity
being one, three, four and five) and vertices in the road networks are rasterized into
heat maps (Channels 9 and 10) by applying 2D Gaussian with standard deviation of
10 pix centered on their respective locations.

3.2. Data sample collection

In the data sample collection stage, we first identified the areas covered by a road
network by defining a road coverage rate greater than 10% within a 100 by 100m
grid. Among the road-covered grids, we randomly assigned points as center locations
to crop 512 by 512-m-multichannel-data samples, which are then compressed into
256 by 256 pix patches to save computational costs. According to a recent urban fab-
ric classification study by Fang et al. (2020a), a 512 by 512m data sample is the most
appropriate spatial unit for the application of deep learning-based computer vision
techniques compared to other patch sizes of 128, 256, and 1,024m. The random
extraction of data patches yields approximately 56,000 street network samples for the
four case study areas (Figure 3). More detailed statistics regarding the four case study
areas are summarized in Supplemental Material A.

4. Developing a topography-aware GAN model

4.1. Overall structure

We built the proposed topography-informed street network generation model based
on a state-of-the-art model for image inpainting (Yu et al. 2019). Following the general
principles of GAN, a generation system and a discrimination system are jointly and
iteratively trained. The generation system produces street networks within a defined
region and the discrimination system evaluates the generalized street network until it
is hard to distinguish the outputs from the ground truth. The generation system is a
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cascade of three stages: (1) topographic information preprocessing, (2) vertices predic-
tion and coarse street network generation, and (3) street network refinement.

As shown in Figure 4, the inputs of the proposed generation system include con-
textual street network (Inst) defined by mask channels (Inmask), junction guidance
(Inguid), and topographic information (Rawtopo). The model output is the completed
street network (Outsts2). A detailed description of model variables is summarized in
Supplemental Material B.

Prior to the three-stage model training, model input and ground truth pairs (stage
0) are prepared given data samples from the prepared training dataset (see Section 3).
We randomly generate masks, Inmask , following the algorithm described by Fang et al.
(2020b) to derive input street network patches Inst ¼ xst � Inmask: Specifically, a cen-
ter location of the missing area is randomly assigned to generate a rectangular mask
(with the width and height being a random number from 48 to 64 pix) within a street
network sample of 256 by 256 pix. Supplemental Material C provides further details
on the mask-generation process.

To foster a sharp and realistic street network generation, a Spectral-Normalized
Markovian Discriminator (SN-PatchGAN) (Yu et al. 2019), widely adopted in other
image inpainting tasks (Jo and Park 2019), is used in our model. A convolutional net-
work with spectral normalization (Miyato et al. 2018) is used as the feature extractor,

Figure 3. Topographic maps with highlighted sampling areas for the four case study cities.
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where the input consists of a street network patch (Outputsts2), a mask (Inmask), junction
guidance (Inguid), and preprocessed topographic information (Intopo). The output is a
three-dimensional feature cube in shape Rh�w�c (h,w,c representing the height, width
and number of channels). We then apply GANs to each element in the feature cube,
forming a set of ‘true or false’ predictions on different spatial locations of the input
street network patches (see Section 4.4 for details).

4.2. Stage 1: a geo-extractor (GE) module for topographic information selection
and weighting

In stage 1, the GE module is designed to learn dynamic topographic information selec-
tion and weighting mechanisms at different spatial locations. In hilly areas, topo-
graphic information is deemed more essential to guide street network generation,
whereas street network patterns are deemed more essential to inspire street network
generation in flat regions. Given the seven topographic information channels of sam-
ple Rawtopo, we aim to first predict a gate channel, Gtopo, defining the spatial distribu-
tion of hilly areas and flat regions. Second, we seek to predict a set of heat maps,
Atopo, for the seven topographic information channels, highlighting topographic fea-
tures that can be used to guide street network generation. Gtopo is a channel gate
map sharing the same shape and resolution as the topographic information channels
with decimals ranging from 0 to 1, describing how much of the topographic informa-
tion should be let through. A value of 0 means no thoroughfare, while a value of 1
means full transmission with no losses. Atopo consists of seven heat maps for the seven

Figure 4. Overall framework of proposed street network generation system.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 2043



input topographic information channels, containing decimals ranging from 0 to 1 rep-
resenting the intensity of attention.

In the GE module, we adopt parallel multi-resolution subnetworks with multi-scale
fusion mechanisms for subnetwork connection and information exchange. The module
takes preprocessed topographic information patches in shapes 256 by 256 pix, 64 by
64 pix, and 16 by 16pix as inputs for the three high-to-low resolution subnetworks.
Lower resolution subnetworks are gradually added one by one and stage by stage,
from 4 by 4 pix to 1 by 1 pix. This structure enables the module to maintain both
high-to-low resolution spatial representations of the topographic information and
learn channel-wise attention among the seven types of topographic data. The detailed
structure of the GE module is shown in Supplemental Material D.

4.3. Stages 2 and 3: Geo-merging (GM) bypaths for vertices prediction and
coarse street network generation as well as street network refinement

Backbones with dilated convolutional layers and contextual attention modules
adopted by Yu et al. (2019) are among the state-of-the-art research for image inpaint-
ing tasks. These backbones are designed to support the models in learning non-local
correlations among pixels in the context region as well as the missing region through-
out the training stage. The process expands the reception field to ‘see’ a larger area of
the input image when computing each output pixel within the predefined infill region.
This strategy works well for street network generation on flat terrain where the street
network designs are always inspired by surrounding street network patterns, aiming
to maintain the consistency of local spatial configurations. However, a street network
in a hilly urban fringe area is always sparse, thus lacking enough surrounding street
network patterns that can be borrowed to infill the missing area. In practice, designers
usually regard local topographic conditions as primary constraints when designing
street networks in hilly regions, subject to the consideration of infrastructure elements
(e.g. drainage), engineering feasibility (e.g. soil type and vegetation cover), and plan-
ning regulations (e.g. developable areas). This practice results in real-world street net-
works in hilly regions showing a strong association with local topographical features
(Figure 5).

Figure 5. Topographic elevation map and slope map for Siena.
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To address the limitations of GAN-based models in incorporating topographic infor-
mation, we append a GM bypath to existing models. Through model training, the cor-
relations among street networks and local topographic features can be mined.

In stage 2—prediction of vertices and coarse street-network generation—two paral-
lel encoder–decoder structures (paths) are introduced. The GM bypath takes prepro-
cessed topographic information (Intopo) and junction guidance (Inguid) as inputs and
predicts a vertices heatmap (Outvt). Meanwhile, the dilated convolutional layers bypath
takes the masked street network (Inst), junction guidance (Inguid), and randomly gener-
ated mask (Inmask) as inputs. Features aggregated with encoded topographic informa-
tion (via GM bypath) are output and transferred to the decoder for coarse street
network prediction (Outsts1).

Similarly, stage 3, the street network refinement stage, consists of three parallel
paths: a dilated convolution layer bypath, a contextual attention bypath, and a GM
bypath in encoder–decoder structures. The network structures of the dilated convolu-
tion layer bypath and the contextual attention bypath are identical to those used in
Yu et al. (2019). These structures employ the predicted coarse street network (Outsts1),
junction guidance (Inguid), generated mask (Inmask), and predicted vertices heatmaps
(Outvt) as inputs. Output features from the three paths are aggregated and fed into a
single decoder to obtain the final completed street network (Outsts2). More details
regarding GM bypaths can be found in Supplemental Material D.

4.4. Loss functions

Two types of loss, namely reconstruction and adversarial, are jointly minimized and
maximized respectively to train the proposed deep neural networks by iteratively
updating the parameters embedded in the generation and discrimination systems. The
mixture of the two loss functions allows for the stable training of a high-performance
network model and has been widely adopted for image completion. The trained gen-
eration system is then used for performance evaluation and further inference.

Reconstruction loss (Lrecon) is designed to quantitatively evaluate the model outputs
by measuring the average pixel-wise distance between the outputs and the ground
truths. At the model training stage, the model is calibrated towards generating out-
puts that are identical to ground truths by minimizing the reconstruction loss. In this
work, the total reconstruction loss consists of three components: loss for predictions
of the vertices heatmap, coarse street networks, and the refined street network. The
final reconstruction loss function is defined as:

Lrecon ¼ a�L1 Outvt , GTvtð Þ þ b � L1 Outsts1,GTstð Þ þ c � L1ðOutsts2,GTstÞ (1)

where a, b and c are hyperparameters adopted to weight the three reconstruction
losses. L1ðx, yÞ represents the mean absolute error (L1 loss), which is widely used in
the machine learning field to quantify the pixel-wise similarity between the generated
data patches (Outvt – vertices heatmap; Outsts1 – coarse street network; and Outsts2 –
refined street network) and the ground truth patches (GTvt and GTst).

Adversarial loss (Ladv) is considered and included in the loss functions of most
image-completion algorithms. By considering adversarial loss, the standard minimiza-
tion process of reconstruction loss can be turned into a matter of min-max
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optimization in which the discriminator is jointly updated with the generation network
at each training iteration. In this work, the hinge loss function is adopted to determine
whether the input street network patch is real or fake. The adversarial losses for train-
ing the discrimination and generation systems are, respectively:

Ladv ¼ 0:5� ð� E½minð0, � 1þ DðGTst , Inguid, Intopo, InmaskÞÞ�
� E½minð0, � 1� DðOutsts2, Inguid, Intopo, InmaskÞÞ�Þ (2)

Lgen ¼ k � Lrecon þ l� ð�E½DðOutsts2, Inguid , Intopo, InmaskÞ�Þ (3)

where k and l are hyperparameters adopted to calculate the generation loss Lgen:
Dðx, c1, c2, c3Þ represents the calculation process in the discriminator, namely the SN-
PatchGAN in this study. The discriminator takes either generated (Outsts2Þ or ground
truth (GTstÞ street network patches as inputs, considering their attributes related to
junction locations (Inguid), preprocessed topographic information (Intopo), and randomly
generated masks (Inmask). The discriminator outputs values ranging from 0 (i.e. gener-
ated) to 1 (i.e. ground truth) for the input street network patches.

4.5. Model training

The concatenation of Inst , Inmask , Inguid, and Rawtopo forms the model input, while GTvt
and GTst represent the ground truth for the loss calculation. The three-stage gener-
ation system G takes the model input and outputs the predicted street network
Outsts2: The discrimination system D takes the output from the generation system
(Outsts2), its ground truth pair (GTst), and its generation conditions as the inputs. The
system outputs a set of ‘true or false’ predictions on various spatial locations of the
predicted street network patches Outsts2: The training procedure is shown in
Algorithm 1 and Figure 4. The model is converged when (1) the adversarial loss for D
on the training dataset is maintained at a stable level, and (2) the reconstruction loss
for G on the test dataset does not decrease with the number of iterations.

Algorithm 1. Training the proposed framework

1: while G has not converged do
2: Sample batch street network sample, xst , Inguid , xvt and Rawtopo from training data
3: Generate random masks Inmask for xst
4: Construct input street network Inst  xst � Inmask
5: Get gate map and attention maps Gtopo , Atopo  GEðRawtopoÞ
6: Get preprocessed topographic information

Intopo  Rawtopo � Atopo � Gtopo;
7: Get predictions from the generator (G) for the two generation stages

Outsts1, Outvt , Outsts2  GðInst , Inmask , Inguid , IntopoÞ
8: Calculate adversarial loss for discriminator (D) training

Ladv ¼ 0:5�
�
� E min 0, � 1þ D GTst , Inguid , Intopo, Inmaskð Þð Þ½ � � E½minð0, � 1�

DðOutsts2, Inguid , Intopo , Inmask

��
�
�

9: Update discriminator (D) with Ladv
10: Calculate Reconstruction loss

Lrecon  a�L1 Outvt , GTvtð Þ þ b � L1 Outsts1,GTstð Þ þ c � L1ðOutsts2,GTstÞ;
11: Calculate generation loss for generator (G) training
Lgen  k � Lrecon þ l � DðOutsts2, Inguid , Intopo, InmaskÞ

12: Update generator (G) with Lgen;
13: end while
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5. Experimental design and results

5.1. Experimental design

Three models are designed for comparing the performance of the conventional and
proposed street network generation tools. All the models are tested using the same
topographic enhanced street network dataset as introduced in Section 3. Note that
the samples extracted from Florence and Perugia are used to train the models, while
samples extracted from Rome and Siena are used for validation and testing.

Model 1 is built following the one-stage model structure introduced by Fang et al.
(2021) and focuses on the fundamental context and junction nodes as planning guid-
ance1 for generating street networks. We also incorporate topographic information
into Model 1 by simply attaching seven channels of topographic information to the
input samples. This aims to capture the correlation between the topographic informa-
tion and the existing street network through model training and use the topographic
information to guide street network generation in model testing. Model 2 improves
Model 1 by adopting a two-stage model structure that was first proposed by Yu et al.
(2019), which achieved state-of-the-art performance in classic image inpainting tasks.
The proposed three-stage model (Model 3) extends Model 2 by pre-positioning a pre-
processing module for topographic information, GE, and appending a bypath, GM, for
local topographical feature extraction and analysis. Model 3 further predicts vertices
for street networks as indeterminate output, in which we design a loss component to
guide the model training (Table 1).

5.2. Settings for model training and testing

Our models for all designed experiments were trained with Python v3.6.9, PyTorch
v1.3.0, CUDA v10.0 and CUDNN v10.0 on 8 � NVIDIA Tesla P100 GPU for 50 epochs
on each experiment. Each training epoch took 741 iterations with a batch size of 64.
Our evaluation used 9,033 samples, and the test was conducted on the same device
with a batch size of 64.

Table 1. Alternative models for training and testing.
Model 1 Model 2 Model 3

Model structure
Generation structure One stage Two stages Three stages
Prepositioned topographic information preprocessing module – – �

Input: Fundamental context and planning guidance
Surrounding street networks � � �
Junction nodes � � �

Input: Topographic information
Topographic elevation � � �
Slope � � �
Aspect of slope � � �
Hill shade maps with four different azimuths � � �

Output: Intermediate result
Coarse street networks – � �
Vertices – – �

Output: Final result
Generated street networks � � �
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5.3. Testing results

5.3.1. Qualitative comparisons
Figure 6 compares the input data, the ground truth and model outputs for randomly
selected flat-terrain urban areas in an intuitive manner2. With inputting ground truth
junction locations and surrounding street networks, all three models successfully con-
nected the junction nodes using straight-line segments and adapted the generated
network to the surrounding network. All results are consistent with the vicinity with
appropriate connections and coherent hierarchies. The performance of all three mod-
els is not affected by the topographic inputs (i.e. the seven types of topographic
information).

The predictive performance of the three models differs when these are applied to
hilly urban areas. As shown in Figure 7, although Model 1 and Model 2 successfully
recognize the dead ends of the roads, linkages have not been fully established. In con-
trast, Model 3 can perform well in street network generation using either straight or
curved lines (roads), with reasonable connectivity to the surrounding street networks.

The results above demonstrate that simply attaching additional topographic infor-
mation to the input samples (Model 1) or applying state-of-the-art image inpainting
techniques (Model 2) cannot yield reliable generation results in hilly urban areas. The
sparse distribution of street networks in such areas makes it difficult for the conven-
tional models (Models 1 and 2) to borrow information from surrounding areas for

Figure 6. Street network generation in a flat urban area using Model 1, Model 2, and Model 3.
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street network generation tasks. The proposed model (Model 3) equipped with the GE
module and GM bypath proves successful in learning the correlations between local
topographic features and street networks (Figure 8). The model can correctly identify
the extracted local topographic features (through the GE module) and use them to
guide the generation of winding mountain roads.

5.3.2. Quantitative evaluation
Similar to other image generation and image inpainting tasks, learning-based street
network generation lacks good quantitative evaluation metrics, due to there being
many possible solutions that differ from the original street network (Yu et al. 2018,
2019). In this work, we provide junction nodes and seven types of topographic infor-
mation that serve as constraints in street network generation. As a result, the pre-
dicted street network is expected to be identical to the original one. Thus, evaluation
metrics in terms of reconstruction errors are adopted in this work to assess the pixel-
wise difference between predicted street networks and ground truths. Specifically, we
report our evaluation in terms of mean L1 error and mean L2 error, in other words,
mean absolute error (MAE) and mean squared error (MSE) respectively, for the three
models shown in Table 2. The multiple-stage models (Model 2 and Model 3) perform

Figure 7. Street network generation in a hilly urban fringe area using Model 1, Model 2, and
Model 3.
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better than Model 1 (one-stage model). The full model, Model 3, achieves the best
performance of the three in terms of MAE and MSE.

Moreover, we calculate metric choice (MC) and metric integration (MI) to measure
the differences in overall connectivity and accessibility between the generated street
networks and the ground truth. Concretely, we first convert the output image repre-
sentations of street networks to graphs, where the street network junction nodes and
road segments are represented by graph vertices and graph edges, respectively. Then,
we calculate MC and MI for all the road segments, and further calculate the length-
weighted metric choice (LWMC), length-weighted metric integration (LWMI), absolute
percentage errors for LWMC (APEMC), and LWMI (APEMI) for the generated street net-
work following the equations below:

LWMCk ¼
Pn

i¼0 lk, i �MCk, iPn
i¼0 lk, i

(4)

Figure 8. Street network generation results from Model 3 against preprocessed topographic infor-
mation (Intopo) and derived gate channel (Gtopo).

Table 2. Results of mean absolute error
(MAE) and mean squared error (MSE) on the
entire testing dataset.
Model MAE MSE

Model 1 0.1248 0.2453
Model 2 0.1236 0.2447
Model 3 0.1199 0.2345
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LWMIk ¼
Pn

i¼0 lk, i �MIk, iPn
i¼0 lk, i

(5)

APEMCk ¼
^LWMCk�LWMCk

�� ��
LWMCk

(6)

APEMIk ¼
^LWMIk�LWMIk

�� ��
LWMIk

(7)

where, lk, i is the length of line segment I in sample k. MCk, i and MIk, i are the metric
choice and metric integration for road segment I in sample k.

Examples of the image-to-graph conversion outputs (including the associated
LWMC, LWMI, APEMC, and APEMI) from Model 1 and Model 3 are shown in Figure 9.
Figure 10 further summarizes the APEMC and APEMI results across the entire samples
in the test dataset. The street networks derived from Model 3 are found to be more
likely to share a higher similarity in connectivity and accessibility (i.e. lower APEMC
and APEMI) with the ground truths compared to those from Model 1.

Furthermore, Model 1 is associated with a more significant difference in connectiv-
ity and accessibility among generated street networks and the ground truths when
applied to hilly urban areas. Compared to the case of Rome (i.e. a flat urban area), the
application of Model 1 in Siena (a hilly urban region) yielded 17.02% (¼21.93% �
4.91%) and 8.00% (¼10.30% � 2.30%) more generational outputs with APEMC and
AMEMI greater than 100%. Model 3 effectively narrows the performance differences
between flat and hilly areas to 3.56% for APEMC and 0.38% for AMEMI.

6. Weighting the importance of topography in road network generation

To further demonstrate the working mechanism of the proposed GE module and justify the
effectiveness of this module, we analyzed the performance of outputs from the GE, namely
gate channels (Gtopo) and heat map sets (Atopo), to interpret the learnt dynamic topographic
information selection and weighting mechanism. To achieve this, we inferred the trained
Model 3 with GE module (introduced in Section 5) on a newly created dataset for GE ana-
lysis (named ‘GEanalysis set’). We followed the sampling process described in Section 3 but
covered the whole rectangular sampling areas for Rome and Siena3. The analysis can also
reveal the relative importance of the seven types of topography-related inputs.

6.1. Self-adaptive systems

The proposed GE module turns the original street network generation model for flat
areas into a self-adaptive system, where the GE module outputs a gate channel, Gtopo,
for each input data sample. This controls the percentage of preprocessed topographic
information passed to the following generation model to inform the street network
prediction in both hilly and flat regions. The higher topographic information through
rate represents greater need to incorporate topographic information in street network
prediction, while the lower topographic through rate represents fewer topographic
constraints in the design of street networks. The average value of the gate channel for
each input data sample, InRatiotopo, also serves as an index for quantifying the
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topographic constraints for street network planning and informing practitioners when
the topographic information should be considered.

To demonstrate the effectiveness of the self-adaptive system, we calculate the aver-
age topographic information through rates (InRatiotopo) for the samples in the
GEanalysis set using the trained Model 3 with GE module. As shown in Figure 11, the
road networks are formed in regular grid patterns and the majority of street junctions
are connected using straight road segments within the area of lower InRatiotopo, while
the road networks become sparser and the road becomes winding with an increas-
ing InRatiotopo:

6.2. Weighting the seven types of topographic information

To explore the dynamic weighting mechanism of topographic inputs in the GE module
(in Model 3), we calculate the channel-wise average weights for different types of
topographic information for the samples in the GEanalysis set. Wk represents how the

Figure 9. Examples demonstrating the process for calculating APEMC and APEMI for the output
street network image.
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GE module weighs different types of topographic information to predict realistic street
networks in both flat and hilly regions:

Wk ¼
Pw

i¼0
Ph

j¼0ðAtopok, i, j � Gtopoi, jÞ
w � h

(8)

where Wk is the channel-wise average weight for different types of topographic infor-
mation (k¼ 1 represents elevation, k¼ 2 represents slope, k¼ 3 represents aspect of
slope, k from 4 to 7 represents the hill shade map with an azimuth of 0, 90, 180, 270
degrees, respectively); w is the width of the input data sample (256 pix in our case); h
is the height of the input data sample (256 pix in our case); Atopok, i, j is the output
attention intensity for pixel at location i, j in channel k; Gtopoi, j is the output topo-
graphic information through rate for pixel at location i, j. A higher Wk indicates the
higher importance of topographic information k in street network generation tasks,
while Wk¼100% shows when the GE module takes the entirety of the raw topographic
input k and transfers it to the generation model.

As shown in Figure 12, the GE module picks topographic information in different
percentages. Among the seven types of topography-related inputs, the aspect of the
slope is found to be weighed the least by the GE module: approximately 5% of the
information is adopted by the GE module for the generation tasks. Compared with
the raw topographic data, the GE module accepts 10%–30% of the information in all

Figure 10. Violin frequency plots of APEMC and APEMI distributions for street network images out-
putted from Model 1 and Model 3, with input samples extracted from Rome and Siena.
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the other topographic channels, with percentages of the slope being weighted
higher (24%–29%).

Moreover, the weights of the information on elevation and slope increase with their
numerical values. Positive linear associations between the weights for the elevation
and slope channels and correspondence input raw data are shown in Figure 12(a,b).
Topographical information becomes more critical in guiding the street network design
where there is a higher elevation and steeper slope. Subsequently, the GE module
enhances the features embedded in elevation and slope channels by amplifying the
raw data with higher intensity (i.e. higher numerical values times larger weights) while
restraining raw data with lower intensity. A slope percent of 6% leads to a topo-
graphic weight of 24% in the GE module, but this weight will increase to over 27% for
a slope percent greater than 16%. Linear regression also suggests that a slope percent
of 9% serves as a threshold in street network generation. The importance of slope
data is found to be greatly amplified in the GE module when the average slope per-
cent is higher than 9% (i.e. 5.14 degrees).

7. Conclusions

In the era of information and communication technologies, deep learning-based mod-
els are increasingly used to inform spatial planning, such as street network generation
(Law et al. 2020, Shi et al. 2021). In this research, we have proposed a new method for
the automated generation of road networks that are both context aware and topog-
raphy informed. Specifically, the method can effectively incorporate various types of
topographic information into a street generation model based on a generative

Figure 11. Topographic elevation and average topographic information through rate (InRatiotopo).
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adversarial network (GAN) and can equip this model with a self-adaptive generation
system for both flat and hilly urban areas.

Regarding the model structure, the proposed street network generation system
extends the existing end-to-end model to a three-stage one. With the same model
inputs of topographic information and contextual guidance, the extended model can
use coarse road networks and their vertices as intermediate results to improve predic-
tion accuracy. The improvements are accomplished by introducing a geo-extractor
(GE) module and a geo-merging (GM) bypath. The GE module learns dynamic topo-
graphic information selection and weighting mechanisms at different spatial locations
and outputs the processed topographic data to inform the system regarding the
extent to which local topography should be considered in the generation tasks. The
GM bypath builds on the local topographic information and junction guidance to
derive vertices heatmaps that support adaptive street network generation.

Figure 12. Correlations between channel-wise average weights for the seven types of topographic
information derived from the GE module and corresponding input topographic data.
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The experiments for the case study areas in Italy demonstrate that the incorpor-
ation of topographic information into the generation model yields a more realistic pre-
diction of street configurations. The model’s effectiveness is further enhanced when
generating streets in hilly areas. The mean absolute error and mean squared error
decrease from 0.1248 and 0.2453 in the conventional Model 1 to 0.1199 and 0.2345 in
the improved Model 3. Moreover, the topography-aware model (Model 3) can sharply
narrow the performance differences between flat and hilly areas (from 17.02% to
3.56% in APEMC).

The model results provide insights from the perspective of computer vision to assist
geographers and planners in recognizing when topographic information should be
considered and which topographic data should receive more attention in road net-
work design. Specifically, elevation and slope information should receive considerable
focus in plan-making processes as their importance increases significantly in hilly
urban areas. According to the GE analysis, a 9% slope percentage (5.14�) proves to be
a threshold above which additional attention should be devoted in street net-
works design.

This research has several limitations, the consideration of which will shape the
future research agenda. First, the model’s generative capability is applied to areas
where road networks are reasonably developed considering the surrounding con-
text and the local topographic features. The training datasets only include two
Italian cities (i.e. Florence and Perugia) where the road networks have been devel-
oped through the centuries. We acknowledge that there are also several global cit-
ies (e.g. San Francisco) where orthogonal street grids have been widely adopted
even in hilly areas. Unsurprisingly, the current model will poorly predict their street
networks. The varying weights of the factors determining street network design
globally call for (1) the building of a larger road network training dataset that can
cover more contemporary city regions, and (2) the combined consideration of both
topographic and non-topographic factors in road-network generation. The enriched
dataset and model inputs could help to train the GE module to learn the relation-
ship between topography, non-topographic conditions, and the road network in
various local contexts. In this way, rules of thumb that are employable globally and
context-specific guidance (e.g. the slope threshold) can be derived to inform road
network design.

Second, the consideration of the determinants of street configuration in this
research is not comprehensive. Due to the limitations of prevalent computer vision
techniques to mine the relationships across discrete features, polyline-based hydro-
logic features such as waterways and drainage channels are not included in the model
training. Future research can employ other deep-learning techniques (e.g. graph con-
volutional networks) to investigate interrelationships using vector-based datasets.
Moreover, many other factors might impact the hierarchical layout of roads in addition
to topographic and hydrologic features, such as soil types, legal regulations (e.g. non-
development area), and planning guidance (e.g. the density of buildings). Future work
should introduce a combination of different determinants to clarify the relationships
and their relative importance, which can better imitate plan-making processes
in practice.
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Notes

1. Note that the impacts of planning guidance have been explored in Fang et al (2021) and
therefore is out of the scope of this research.

2. More test results can be found in Supplemental Material D.
3. Specifically, we cropped one data sample from the multi-channel base maps of Rome and

Siena every 25 pix in both horizontal and vertical direction, forming a new dataset with
6,800 samples for GE analysis.
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